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Banana Distributions Based on 
Stochastic Polar Coordinates

 A tracking algorithm may employ a probability distribution for object locations at a 
given time after the last observation. In the two-dimensional case, such a distribution 
on geographical locations typically takes a curved, oblong shape, a so-called “banana 
distribution.”
 One recently proposed version of the banana distribution assigns probabilities to 
the possible future locations of a moving object for which the original location, speed 
and direction are known, while subsequent movement is determined by a constant, 
unknown acceleration and a constant, unknown turn rate with independent, zero-
mean Gaussian distributions.
 Finding the probabilities of locations in such a distribution can be computationally 
demanding, since there are no functional, closed forms to recover the acceleration 
and turn rate that would have taken the object to a particular geographical location. 
In this paper we propose an approximation to the banana distributions above based 
on polar coordinates, where the angle out to the next observation is normally distri- 
buted with expectation zero, while the distance out to the next observation is also 
normally distributed, but with parameters given by two functions on the angle. This 
framework is computationally far more tractable, and we show that remarkably good 
approximations to the original banana distributions can be achieved by fine-tuning 
of the two functions on the angle. Finally, we show how to incorporate the additional 
assumption of an unknown initial direction with a Gaussian distribution.
 We believe that the framework proposed here, which is closely related to the 
shape of the distribution, may serve as a suitable framework in which to compare the 
various other banana-like distributions obtained from different types of assumptions.
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1 Introduction
Association algorithms employed in tracking of multiple moving objects will in some
manner or other utilize a probability distribution for the location of an object at a given
time after the last observation. The resulting two-dimensional probability distribution
on geographical coordinates will typically assume a curved, oblong shape, giving rise to
the informal concept of a “banana distribution.” The precise nature of the mathematical
distribution used to model the situation will depend on the original speed, elapsed time,
turning characteristics, and more generally on the type of assumptions being made.

Long et al. considered a robotmoving initially at a certain speed in a certain direction
and with a certain curvature (or turn radius) but with its two wheels governed by con-
tinuous, stochastic processes introducing uncertainty on the subsequent movement [1].
The probability density function for its location after a certain time was approximated
with a probability model where the object is assumed to be moving at constant but un-
known speed and with a constant but unknown curvature. A banana distribution of the
resulting type, based on constant, unknown speed and curvature with given distribution,
is computationally straightforward, since the speed and curvature resulting in a given
position at a particular time are easily recovered by functional, closed-form expressions.

Gade et al. proposed a somewhat different probability model in which the initial
speed and direction are known, while the subsequent movement is determined by a con-
stant, unknown acceleration and a constant, unknown turn rate (rather than turn ra-
dius), producing a so-called CAT-distribution [2]. Such assumptions can be appropriate
in connection with frequent observations of moving objects, where it is reasonable to
assume near constant acceleration between observations, and with objects that typically
turn a constant angle per unit of time rather than per unit of distance. When the acceler-
ation and turn rate are taken to be independent and normally distributed variables with
expectation zero, this also produces a ”banana shaped” distribution, but in this case the
probability density values at geographical coordinates require more computation power
to obtain, since there are no functional, closed forms to recover the acceleration and turn
rate from the geographical position.

In situations of association and tracking, which is the primary motivation for our
work, it is often crucial to have quick, real time recourse to estimates for the proba-
bility densities at a number of different locations, simultaneously for a large number
of different, hypothetical scenarios. Such applications pose very high demands for the
efficiency of the individual estimates. When every such estimate involves an iterative
search algorithm to obtain approximate values for the generating, stochastical variables,
the situation is less than ideal, and one is led to ponder if it might be possible to replace
the whole model with one that is built up in a totally different way, offering functional
lookup for probability density values directly from geographical coordinates, but with a
net behavior closely approximating the original model.

In the present article we consider how to approximate the CAT-distribution with a
model which assumes that the angle out to the next observation, relative to the origi-
nal direction of movement, is normally distributed with expectation zero, and that the
distance out to the next observation is also normally distributed, but with the expected
value and standard deviation given by two functions on the angle. We believe that such
a model, which is more directly related to the shape of the distribution, may serve as a
suitable framework in which to compare the various banana-like distributions obtained
from different types of assumptions, but presently we employ this only to formulate an
approximation to the CAT-distribution which behaves remarkably well for a wide range
of parameter settings.
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2 Basic concepts
In the CAT-model introduced by Gade et al. [2], an object is moving at a known, ini-
tial speed v0 with an unknown, constant tangential acceleration a, in a known, original
direction and with an unknown, constant turn rate ω. A time parameter t represents
the time lapse from an initial observation to the next, and has a fixed value in any given
model. When the original position and direction are represented by the origin and the
positive y-axis, the position of the object at time t will have the coordinates

[x, y] =
v0
ω

[1− cos(ωt), sin(ωt)] (1)

+
a

ω2
[sin(ωt)− ωt cos(ωt), cos(ωt) + ωt sin(ωt)− 1].

Now when the two unknowns a and ω are taken to be independent, normally dis-
tributed random variables with expectation 0 and standard deviations σa and σω , re-
spectively, that is,

(a, ω) ∼ N (0, σa)×N (0, σω) ,

one obtains a probability model with the four parameters v0, t, σa and σω . A contour
plot for the resulting probability density function on geographical coordinates is shown
in Figure 1.

x [m]

y
[m

]

Figure 1: Contour plot shown in blue for the CAT distribution with parameter values
v0 = 280m/s, t = 10 s, σa = 5

3
m/s2 and σω = π

54
rad/s = 10

3
deg/s , which are

those used by [2] in most of the examples. Blue contour lines are drawn for density
values between 10−6m−2 and 10−10m−2. The y-axis represents the original direction
of movement. A rough, first approximation is shown in red.

Other parameter settings than those from Figure 1 yield contour plots with differ-
ently shaped bananas, but, with parameter settings going beyond certain bounds, the ba-
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nana resemblance goes away. With a significant chance that the object has, by the time
of the next observation, come to a complete stop and begun to reverse, the curves will
lose their oblong shape, and, similarly, with a significant chance that the object has come
through a very large turn of direction, say 270 degrees, the bananas start to merge at the
ends. In both cases, the proposed approximations start to fail. Exactly when they fail is
an empirical question explored in Section 6, but we identify the crucial figures here. The
object has come to a stop if at ≤ −v0, which happens with significant chance if σat

v0
is

larger than some small number of choice around 0.25. Similarly, the change of direction
ωt has a significant chance of exceeding 270◦ when σωt is larger than some number
of choice around 0.25 · 270◦. In Section 6 one will see that these bounds correspond
roughly with the intervals considered in Figure 7.

For any geographical position with Cartesian coordinates (x, y) let (φ, r) be the
corresponding polar coordinates, i.e., the angle atan2 (x, y) relative to the positive y-axis
and the distance

√
x2 + y2 from the origin. It can be shown that the first component

vector on the right side in (1) has an angle of exactly ωt
2
while the second component will

have an angle of approximately 2
3
ωt when |ωt| < π. When |at

2
| is small in comparison

to v0, the first component will dominate, andφwill be close to ωt
2
. A first approximation

to the CAT-model using polar coordinates as the basic, random variables, will therefore
assume that φ is normally distributed with zero mean and standard deviation σωt

2
. Next

it can be seen that the length of the first component vector on the right side in (1) is
exactly1 v0t sinc

(
ωt
2

)
, while the second can be shown to have a length of approximately∣∣ 1

2
at2

∣∣ for moderate values of ωt, and will add or retract to the total length. A first
approximationwill therefore assume that the length r has an expected value of v0t sincφ
when the angle is φ. As for the standard deviation of r given φ, note that r = v0t +
1
2
at2 when the turn rate is zero, and hence the standard deviation is 1

2
σat

2 in this case.
Assuming for simplicity that r given φ is normally distributed with the same standard
deviation for all φ, one obtains the following rough approximation.

ROUGH APPROXIMATION
1. φ ∼ N

(
0, 1

2
σωt

)

2. r|φ ∼ N
(
v0t sincφ, 1

2
σat

2
)

To give an impression of the goodness of this first approximation, the contour lines
in the resulting probability density function were drawn in red in a layer underneath the
proper CAT-distribution in Figure 1, using the same parameter values. The innermost,
red contours are invisible in the figure, as they are completely covered by the blue.

Table 1 compares the probability density values and the approximations at geograph-
ical locations within the five blue contour curves, and lists the maximal error rate found
within each curve together with the proportion of the probabilitymass within that curve.

Table 1: Probabilitymass andmaximal error rate within each of the contours of Figure 1.

Contour at density level [m−2] 10−6 10−7 10−8 10−9 10−10

Total probability mass inside 58% 96% 99.6% 99.96% 99.997%
Maximal error within contour 1.4% 8% 26% 57% 108%

At this level the approximation does not look all bad, but there is considerable room
for improvement. We approach this matter with a detailed look at the individual parts of

1sincx denotes the nonnormalized function sin x
x

.
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the rough approximation, first the approximate distribution of the angle φ and then the
approximate distribution of the distance r.

3 Approximate distribution of angle
Under the CAT-distribution, the angle φ is a non-linear function of the acceleration a
and turn-rate ω, and therefore not normally distributed. We show in the appendix that
when ωt stays within ±π and |at| is small compared to v0, φ is roughly equal to the
product of the two independent variables ωt

2
and 1+ at

6v0
. This product has zero expec-

tation and standard deviation σωt
2

√
1 + (σat

6v0
)2. Since the factor variables are normally

distributed, the product, under the assumption of a small σat
v0

ratio, behaves approxi-
mately as a normally distributed variable [3]. When σat

v0
< 0.2, the last factor in the

standard deviation is approximately 1 + 1
72
(σat

v0
)2 < 1.0006, and can be ignored when

a very high level of precision is not needed. In the next, improved approximation, part 1
therefore remains unchanged.

4 Approximate distribution of distance
The conditional distribution of r when φ is given, is better understood in the light of
some observations made in the appendix, where we show that for “moderate values”,

φ ≈ ωt

2

(
1 +

at

6v0

)
, (2)

r ≈ v0t sincφ+
at2

6
(4 sincφ− cosφ) . (3)

Thus, φ behaves approximately as the product of the two independent, normal variables
ωt
2

and 1 + at
6v0

. In [4] we consider the conditional distribution of the factor variables
when the product of two independent, normal variables is known, and present results
about the distribution ofX|XY = z whenX,Y are independent, normal variables, Y
has zero mean,X has a low coefficient of variation σX

µX
, and z is not too large compared

to µXσY .
Now, there are three components to the approximation of r’s probability distribution;

the use of the normal distribution and the individual approximations of the mean value
and standard deviation. The three are discussed individually.

4.1 Normal distribution
Of course, r is not in fact normally distributed, since it does not take negative values, but
the examples examined so far have been remarkably consistent with such an assumption.
Figure 2 shows the numerically computed probability density of r for φ = 0.4π drawn
in blue. The normal distribution (density) with matching mean and standard deviation
was drawn in red in the same figure, but is not visible behind the blue. In the interval
between 1800 and 2400 m in the figure, the two computed probability densities differ by
at most a quarter of a percentage of their values.

In fact, the normal distribution is no surprise in the light of [4], where, under the
assumptions above, we show that the conditional distribution of X when the product
XY is given, is approximately normal. Thus, (2) shows that the conditional distribution
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]

Figure 2: Numerically computed conditional probability density of r forφ = 0.4π, with
the parameter values from Figure 1.

of the random variable 1+ at
6v0

when φ is given, is approximately normal. Therefore, so
is a|φ and, from (3), r|φ as well.

4.2 Expected value
TheapproximationE[r|φ] ≈ v0t sincφ used above, stipulates a decrease in the expected
value of r as φ increases in absolute value. This is because a large |φ| implies a curved
trajectory and hence a net displacement significantly shorter than the trajectory itself.
There is, however, another factor in play; large absolute values of φ may in part be the
result of a large acceleration, which again implies a longer trajectory. Conversely, a small
|φ|may in part be the result of a negative acceleration, with the opposite effect. So while
the expected value of r does in fact decrease with higher absolute values ofφ, the effect is
smaller than implied by the rough approximation. Figure 3 shows the actual, numerically
computed2 expected values of r in blue and the function v0t sincφ in red, in the running
example with v0 = 280, t = 10, a ∼ N (0, 5

3
) and ω ∼ N (0, π

54
). The difference

between the curves is about 24 meters at the end of the diagram.
A better estimate for the blue curve in Figure 3 can be achieved from (2) and (3) in

combination with a result in [4], where we show that under the above assumptions on
2For each angle, the probability density values in the CAT-distribution were computed at evenly

distanced points on a ray with this angle. Such density values relative to Cartesian coordinates
[x, y] = r · [sinφ, cosφ] were converted to density values relative to polar coordinates [r, φ] by
multiplication with the Jacobi determinant r, described in Section 5. The expected value of r given
φ was then computed from these values in a straightforward way.
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Figure 3: Numerically computed conditional expectation of r in blue compared to the
function v0t sincφ in red, using the parameter values from Figure 1.

the variablesX and Y ,

E [X|XY = z] ≈ µX

(
1− σ2

X

µ2
X

)
+

σ2
Xz2

σ2
Y µ3

X

. (4)

In the present case, this implies (5) and hence also (6).

E

[
1 +

at

6v0

∣∣∣∣φ
]
≈ 1−

(
σat

6v0

)2

+

(
σat
6v0

)2

φ2

(
1
2
σωt

)2 (5)

E [a | φ] ≈ σ2
at

6v0

(
φ2

(
1
2
σωt

)2 − 1

)
(6)

Here it is worth noticing that the conditional mean of a is positive for |φ| > σωt
2

and
negative for |φ| < σωt

2
.

Applying (6) to (3) and introducing the notation

sccφ =
1

3
(4 sincφ− cosφ) (7)

yields the approximation Pµ(φ) for the mean of r when φ is given.

Pµ(φ) = v0t sincφ+
σ2
at

3

12v0

(
φ2

(
1
2
σωt

)2 − 1

)
sccφ (8)

The curve for this expression compares much better with the computed curve for the
mean, cf. Figure 4.
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Figure 4: Errors in meters when approximating E[r|φ] with the functions v0t sincφ
(red) and Pµ(φ) (green). The parameter values are those from Figure 1.

4.3 Standard deviation
In the first, rough approximation, r|φ has a standard deviation that does not depend on
φ. Numerical computations show that this is not accurate; Figure 5 graphs the standard
deviations of these various probability distributions along the vertical axis against the
given values ofφ along the horizontal axis, with the values decreasing significantly when
φ runs from 0 to π

2
.

In [4] we show that under the above assumptions on the variablesX and Y ,

SD [X|z] ≈ σX

(
1 +

1

2

σ2
X

µ2
X

)
− 3

2

σ3
Xz2

σ2
Y µ4

X

. (9)

In the present case, it follows that the conditional standard deviation of 1+ at
6v0

when φ
is given, is

SD

[
1 +

at

6v0

∣∣∣∣φ
]
≈ σat

6v0

(
1 +

1

2

(
σat

6v0

)2
)

− 3

2

(
σat
6v0

)3

φ2

(
1
2
σωt

)2 ,

yielding a conditional standard deviation for a of

SD [a|φ] ≈ σa

(
1 +

σ2
a

6v20

(
t2

12
− φ2

σ2
ω

))
, (10)

and – using (3) – a conditional standard deviation for r of approximately

Pσ(φ) =
σat

2

2

(
1 +

σ2
a

6v20

(
t2

12
− φ2

σ2
ω

))
sccφ. (11)
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Figure 5: The function SD[r | φ], numerically computed using the parameter values in
Fig. 1.

We keep the termwith σ2
a in (11), as well as in (8), although a similar termwas neglected

in the approximation for σφ; the reason lies in a difference in relative importance.

5 Use of improved approximation
Using the expressions (8) and (11) for the mean and standard deviation of r given φ, we
obtain an improved approximation for the CAT distribution.

IMPROVED APPROXIMATION
1. φ ∼ N

(
0, 1

2
σωt

)

2. r|φ ∼ N (Pµ(φ), Pσ(φ))

Cartesian coordinates [x, y] can be found from polar coordinates [φ, r] as [x, y] = r ·

[sinφ, cosφ], with Jacobi determinant
∣∣∣∣

r cosφ sinφ
−r sinφ cosφ

∣∣∣∣ = r. If the rough approx-

imation had been accurate, the probability density function on Cartesian coordinates
would be

p0(x, y) =
1

r
g(φ; 0, 1

2
σωt) · g(r; v0t sincφ, 1

2
σat

2)

where g(x;µ, σ) is the normal probability density function 1

σ
√

2π
e−

1
2 (

x−µ
σ )

2

and φ, r

are obtained from x, y as above. This is how the red contours in Figure 1 were produced.
Using the functionsPµ,Pσ instead, one obtains the probability density function p1(x, y)
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Figure 6: Contour plot shown in blue for the CATdistributionwith the parameter values
from Figure 1. The contour lines are drawn for density values between 10−6m−2 and
10−10m−2. Corresponding contours for the improved approximation were drawn in
red, but are not visible from under the blue.

of the improved approximation,

p1(x, y) =
1

r
g(φ; 0, 1

2
σωt) · g(r;Pµ(φ), Pσ(φ)).

Figure 6 shows contour lines in the density functions for two banana distributions; for
the improved approximation in red, and for the genuine CAT-distribution in blue. This
time, the red is completely covered by the blue. Table 2 lists the computed percentages
of the total probability mass inside each of the contours, and the maximal error rate of
the approximations relative to exact density values within each of the contours. Since the
values on neighbouring contour lines differ by 900%, the maximal difference of a mere
6.6% in the table is not visible at this level.

Table 2: Probabilitymass andmaximal error rate within each of the contours of Figure 6.

Contour at density level [m−2] 10−6 10−7 10−8 10−9 10−10

Total probability mass inside 58% 96% 99.6% 99.96% 99.997%
Maximal error within contour 0.06% 0.22% 0.64% 2.6% 6.6%



96

6 Goodness of approximationwithdifferentparam-
eter settings

6.1 Choice of measure
The rough and improved approximations presented above were both formulated and
presented for use with different settings of the four parameters v0, t, σω and σa, while
Table 2 only reflects the behaviour with respect to one particular parameter setting. To
see how the improved approximation fares for the wider range of parameter settings, it
is convenient to focus on a single metric for the goodness of the approximations. The
Bhattacharyya coefficient is such a single measure that is often used to compare proba-
bility distributions, but for present purposes we have designed a measure that indicates
in a more direct way in which cases the error of approximation is acceptable. The mea-
sure we use asks how far out in the distribution it is possible to go before a 5% discrep-
ancy between the actual and the approximate probability density value is encountered.
The question is answered by inspecting discrepancies between approximations and exact
values inside ever wider contour lines in the density function until a 5% discrepancy is
found, and then computing the probabilitymass inside this particular contour line. From
Table 2, it can be seen that the figure must be somewhere between 0.9996 and 0.99997 in
the case of the default settings from Figure 1. The true value is approximately 0.99992;
this means that inside a geographical area that has a probability of 0.99992 of contain-
ing the object, and whose boundary is a contour line for the probability density p(x, y),
the estimated probability density value nowhere deviates from the true figure by more
than 5% of its value.3 Association algorithms will typically disregard any observations
falling outside of such an area, and a 5% error in the estimated probability density value
is well within the acceptable in most cases. The next task is to determine under which
other possible settings of the model parameters does the approximation offer a similarly
acceptable behavior.

6.2 Variation of parameters
To find how the approximations fare for different parameter values it is, fortunately, not
necessary to vary all four parameters v0, t, σa, σω independently. To see this, note that
the position vector in (1) can be written on the form v0tA, whereA only contains v0, t, a
andω inside the subexpressionsωt and at

v0
, and similarly thatPµ(φ) andPσ(φ) can both

be written on the form v0tB, where B only contains v0, t, σa and σω inside the subex-
pressions σωt and σat

v0
. The values of σωt and σat

v0
therefore determine the behaviour of

both the CAT-distribution and the approximation, while the product v0t only gives the
scale and has no bearing on themeasure outlined above. To evaluate the approximations
for various parameter values, it is thus sufficient to vary σωt and σat

v0
.

3Less formally; the largest “banana” inside of which the probability density is guaranteed to be
estimated with an error not exceeding 5%, has a likelihood of 0.99992 of containing the object. The
whole (not necessarily banana-shaped) region inwhich the estimation error stayswithin this bound,
will in general be larger and in this case contains 0.99999 of the probability mass. It is possible to
define an alternative similarity measure based on the existence of such arbitrarily shaped regions
(i.e., non-bananas) with some density values on the inside falling below corresponding values on
the outside. Such an alternative measure will always yield figures as least as good as those achieved
by our chosen measure, but we consider this original measure more intuitive.

Note also the connection between these measures and the Bhattacharyya coefficient, which in
the present example will be at least

∫∫
D

√
p(x, y) · 0.95 p(x, y)dA =

√
0.95

∫∫
D p(x, y)dA

=
√
0.95 · 0.99999, whereD is a region containing 0.99999 of the probability mass.
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6.3 Results
The goodness measure outlined above was computed for 40000 different parameter set-
tings; the combinations of 200 values ofσωt evenly distributed between 0 and 75 degrees,
and 200 values of σat

v0
evenly distributed between 0 and 0.2. The results are shown in Fig-

ure 7, with values of σat
v0

along the horizontal axis and values of σωt along the vertical
axis, while the labelled curves show the contour lines in our measure; how much of the
probability mass to include before an approximation error of 5% is found. The results

σat/v0

σ
ω
t
[°
]

Figure 7: Contour plot showing, for varying parameter settings, how much of the prob-
ability mass has to be included to encounter an error of at least 5%. The red dot indicates
the location of the model used in Figure 1.

show that the approximations are better for smaller values of the parameters, and that as
long as σat

v0
is kept below 0.1 (or σa < v0

10t
) and σωt is kept below approximately 42◦,

the error of approximation stays below 5% for the innermost 99.9% of the probability
distribution.

These resultswere obtained using the relatively simple expressionsPµ(φ) andPσ(φ)
for the mean and standard deviation of r|φ. Using more complex variants of equations
(2), (3), (4), and (9), more complex functions Pµ(φ) and Pσ(φ) can be obtained that
allow the contours to move somewhat further to the right and significantly higher up.

7 Stochastic initial direction
At this point we introduce a third element of randomness, namely, in the initial direction.
This direction is given by an angle θ0, while the final angle and distance from the origin
are now denoted by θ and r. Then

θ = θ0 + φ,
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where, as before, φ is the deviation from the initial direction (but no longer denotes a
polar coordinate). We assume that φ and r are independent of θ0 and are distributed as
in the previous sections. Furthermore, we assume that θ0 is normally distributed with
mean 0 and standard deviation σ0.

The extended model presents some additional challenges for the numerical compu-
tation of the probability density function p(r, θ), but building upon the approximations
above, we will show that our framework is well suited for handling the added complica-
tion. Indeed, the approximation

φ ∼ N (0, σφ) , σφ = 1
2
σωt,

together with the assumption for θ0, immediately gives

θ ∼ N (0, σθ) , σ2
θ = σ2

0 + σ2
φ.

Thedistribution of r|θ remains to be found. It follows fromTheorem 1.4.2 in [5] that
if Z = X + Y is the sum of two independent, normally distributed random variables
with mean 0, then X|Z = z is normally distributed with mean zσ2

X/σ2
Z and standard

deviation σXσY /σZ . Thus, to a good approximation,

φ|θ ∼ N
(
θ̄, σ̄

)
, (12)

where

θ̄ =
θσ2

φ

σ2
θ

=
θ

1 + 4σ2
0/σ

2
ωt2

, σ̄ =
σ0σφ

σθ
=

(
1

σ2
0

+
4

σ2
ωt2

)− 1
2

.

Note that σ̄ ≤ min(σ0, σφ).
By the law of total probability,

p(r|θ) =
∫

dφ p(r|θ, φ) p(φ|θ) =
∫

dφ p(r|φ) p(φ|θ), (13)

since r is independent of θwhenφ is given. As discussed in Section 4, r|φ is very close to
being normally distributed. With this in mind, (12) and (13) show that the distribution
of r|θ is approximately normal if σ̄ is small.4

By the law of total expectation,

E[r|θ] =
∫

dφE[r|θ, φ] p(φ|θ) =
∫

dφE[r|φ] p(φ|θ).

With the approximation from Section 4 and (12) we have

E[r|θ] ≈
∫

dφPµ(φ) g
(
φ; θ̄, σ̄

)
. (14)

By the same argument,

E[r2|θ] ≈
∫

dφ
(
Pµ(φ)

2 + Pσ(φ)
2) g (φ; θ̄, σ̄) .

4To see this in detail, note that the integral in (13) can be evaluated approximately by assum-
ing that the mean of the near-Gaussian function p(r|φ) varies linearly with φ around θ̄ while the
standard deviation is constant. With E[r|φ] = kφ + b and SD[r|φ] = c, the integrand can be
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Figure 8 shows the effect of a normally distributed initial direction, using the pa-
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Figure 8: Numerically computed conditional probability density of r for θ = π
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Equation (16), whose two terms on the right-hand side are of second order in σat
v0

and σ̄, respectively, can be improved by including terms of the next order. With the ad-
ditional term 1

8
P

(4)
µ (θ̄)σ̄4 in (15) and corresponding terms in the expansion forE[r2|θ],
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the omitted fourth-order terms in (16) are found to be
(
(P ′

σ)
2 + PσP

′′
σ

)
σ̄2 +

(
1
2
(P ′′

µ )
2 + P ′

µP
′′′
µ

)
σ̄4,

where the functions are evaluated at θ̄. These correction terms are insignificant in the
case in the middle of Figure 8, while in the rightmost case, where σ̄ is twice as large, they
help to improve the estimate of SD[r|θ], reducing the deviation from the numerically
computed value from about 70 cm to only 5 cm.

Conclusion
We have seen that the use of a simple type of stochastic polar coordinates based on nor-
mal distributions to compute probability densities of banana distributions is both com-
putationally tractable, closely related to the geometry of the distribution, and, in a wide
range of situations, remarkably accurate.

Acknowledgments
Wewould like to thank our colleague Knut Meen at the Norwegian Naval Academy, and
Brita Gade, Carina Vooren, Morten Kloster, and Ole Halvard Sætran at the Norwegian
Defence Research Establishment for inspiring discussions and valuable suggestions. We
also thank the anonymous referees for useful comments.

References
[1] A. W. Long, K. C. Wolfe, M. J. Mashner, and G. S. Chirikjian, “The Banana Distri-

bution is Gaussian: A Localization Study with Exponential Coordinates,” in N. Roy,
P. Newman, and S. Srinivasa (Eds.), Robotics: Science and Systems VIII, MIT Press,
2013, pp. 265-272.

[2] B. H. H. Gade, C. N. Vooren, and M. Kloster, “Probability Distribution for Associa-
tion of Maneuvering Vehicles,” 2019 22th International Conference on Information
Fusion (FUSION), Ottawa, ON, Canada, 2019, pp. 1-7.

[3] L. A. Aroian, “The Probability Function of the Product of TwoNormally Distributed
Variables,”TheAnnals ofMathematical Statistics, Vol. 18, No. 2 (Jun., 1947), pp. 265-
271.

[4] H. Totland and T. Langholm, “Deformed Normal Distributions,” forthcoming.
[5] P. J. Bickel and K. A. Doksum,Mathematical Statistics, Prentice Hall, 1977.

Appendix
Proposition 1. For |ωt| < π and | at

v0
| ≪ 1,

φ ≈ ωt

2

(
1 +

at

6v0

)
.

Proof. With

x1 = 1− cos(ωt), x2 =
1

ω
(sin(ωt)− ωt cos(ωt)) ,

y1 = sin(ωt), y2 =
1

ω
(cos(ωt) + ωt sin(ωt)− 1) ,

we can write
φ = atan2

(
x1 +

a

v0
x2, y1 +

a

v0
y2

)
.

The first-order Taylor polynomial in a
v0

of this expression is

atan2(x1, y1) +
a

v0
· x2y1 − x1y2

x2
1 + y2

1

,

where the second term equals

a

v0
· 1
ω

· 2− 2 cos(ωt)− ωt sin(ωt)
2− 2 cos(ωt)

=
a

v0
· 1
ω

·
(
1− ωt

2
cot

(
ωt

2

))

=
at

2v0
·
(

1
ωt
2

− cot
(
ωt

2

))
.

Now atan2(x1, y1) =
ωt
2
, while 1

x
− cotx ≈ x

3
for |x| < π

2
, so

φ ≈ ωt

2
+

at

2v0
·

ωt
2

3
=

ωt

2

(
1 +

at

6v0

)
.

Proposition 2. For |φ| < π
2
and | at

v0
| ≪ 1,

r ≈ v0t sincφ+ at2

6
(4 sincφ− cosφ) .

Proof. First note that

r ≈ v0t sinc
(
ωt

2

)
·
(
1 +

at

2v0

)
. (17)

This can be shown by obtaining

r = v0t
sin(ωt

2
)

ωt
2

√(
1 +

at

2v0

)2

+

(
at

2v0

)2

·
(

1
ωt
2

− cot ωt
2

)2

from (1) by standard trigonometric identities, and then expanding in powers of at
2v0

.
Next we observe that

sinc
(
ωt

2

)
≈ sincφ− at

6v0
(cosφ− sincφ). (18)

This follows by noting that Proposition 1 also implies that ωt
2

≈ φ
(
1− at

6v0

)
when

| at
6v0

| ≪ 1, and that the first-order Taylor polynomial of sinc (φ+ δ) around φ is
sincφ+ δ · cosφ−sincφ

φ
.

Finally, substituting (18) into (17), multiplying out and deleting second-order terms
in at

v0
, one obtains the proposition.



101

Proof. With

x1 = 1− cos(ωt), x2 =
1

ω
(sin(ωt)− ωt cos(ωt)) ,

y1 = sin(ωt), y2 =
1

ω
(cos(ωt) + ωt sin(ωt)− 1) ,

we can write
φ = atan2

(
x1 +

a

v0
x2, y1 +

a

v0
y2

)
.

The first-order Taylor polynomial in a
v0

of this expression is

atan2(x1, y1) +
a

v0
· x2y1 − x1y2

x2
1 + y2

1

,

where the second term equals

a

v0
· 1
ω

· 2− 2 cos(ωt)− ωt sin(ωt)
2− 2 cos(ωt)

=
a

v0
· 1
ω

·
(
1− ωt

2
cot

(
ωt

2

))

=
at

2v0
·
(

1
ωt
2

− cot
(
ωt

2

))
.

Now atan2(x1, y1) =
ωt
2
, while 1

x
− cotx ≈ x

3
for |x| < π

2
, so

φ ≈ ωt

2
+

at

2v0
·

ωt
2

3
=

ωt

2

(
1 +

at

6v0

)
.

Proposition 2. For |φ| < π
2
and | at

v0
| ≪ 1,

r ≈ v0t sincφ+ at2

6
(4 sincφ− cosφ) .

Proof. First note that

r ≈ v0t sinc
(
ωt

2

)
·
(
1 +

at

2v0

)
. (17)

This can be shown by obtaining

r = v0t
sin(ωt

2
)

ωt
2

√(
1 +

at

2v0

)2

+

(
at

2v0

)2

·
(

1
ωt
2

− cot ωt
2

)2

from (1) by standard trigonometric identities, and then expanding in powers of at
2v0

.
Next we observe that

sinc
(
ωt

2

)
≈ sincφ− at

6v0
(cosφ− sincφ). (18)

This follows by noting that Proposition 1 also implies that ωt
2

≈ φ
(
1− at

6v0

)
when

| at
6v0

| ≪ 1, and that the first-order Taylor polynomial of sinc (φ+ δ) around φ is
sincφ+ δ · cosφ−sincφ

φ
.

Finally, substituting (18) into (17), multiplying out and deleting second-order terms
in at

v0
, one obtains the proposition.


	Forside
	Andre utgivelser i skriftserien
	Innhold
	Ord fra sjef Sjøkrigsskolen
	Forord
	1. Nye undervisningsmetoder og digitale hjelpemidler
	Forelesningen – 700 år og fremdeles i live
	Teambasert læring og digital undervisning i teknologiske emner
	Tavleløs undervisning i matematikk – omvendt klasserom og teambasert læring
	Erfaringar frå digitalundervising av Sensorsystemer for Navigasjonslinja på Sjøkrigsskolen
	Ballistikk på Sjøkrigsskolen fra 2012 til 2018 – hvordan og hvorfor
	NUSSE, EMMA,FREDERIC og GIER, oldefedrene til PC-en din

	2. Sannsynlighetsregningog teknologi
	En introduksjon til sjøminenes matematikk
	En oppskrift for å teste om forventningsverdier og varianser er like, i to serier med uavhengige normalfordelte observasjoner, ved simuleringer

	3. Vitenskapeligeartikler, Fagfellevurdert til nivå 1
	Banana Distributions Based on Stochastic Polar Coordinates

	Seksjon for Sjømilitær teknologi, Forsvarets høgskole, Sjøkrigsskolen



