Content

Appendix A - Smaller ISR USV concepts	3
Saildrone Explorer USV	3
The Waveglider	3
Mariner X	ł
SEA-KIT H - Zero-emission vessel	ł
Protector USV	ł
Appendix B - Choice of sensors	5
Selected sensors	5
Energy consumption	5
Appendix C – DELFTship data	7
Preliminary design	3
Optimised design	5
Appendix D - Drive train, energy production and energy storage	1
Engine24	ł
Generator	5
Fuel	3
Lubrication Oil)
Battery)
Appendix E – Weight breakdown and cross curves	Ĺ
Preliminary design	Ĺ
Weight breakdown	Ĺ
Lightweight	2
Standard weight	3
Fully loaded	ł
Cross curves and stability	5

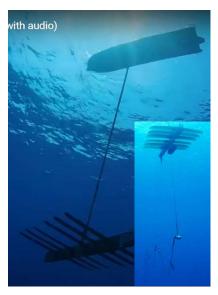
Optimized design
Weight breakdown
Lightweight
Standard Weight
Full weight
Cross curves and stability
Appendix F - Parametric study
Appendix G - Energy consumption and operational profile
Preliminary design
Fuel
Battery
Optimized design
Fuel
Battery
Appendix H - Optimization of propeller
Preliminary Design
Optimized Design
References

Appendix A - Smaller ISR USV concepts

This attachment will show different existing solutions for smaller USV concepts. All pictures and tables are gathered from the reference at the end of each description.

Saildrone Explorer USV

American produced USV with 1 year endurance missions. Length 7 meters with average speed of 3 knots. Autonomously collects high quality data and navigates oceans by waypoint-to-waypoint navigation. Harnessing wind and solar energy for operations. Propulsion relies on wind power. ("Saildrone Explorer USV," 2022)


Saildrone	
Length	7 meter
Average Velocity	3 knots
Endurance	1 year
Power Generation	Renewables

The Waveglider

Renewable powered USV with capabilities to endure ocean missisons. Used as a network by British Royal Navy during exercise Unmanned Warrior to report and track a submarine. Harnesses solar power, propelled by harnessing wave-motion or using a small electrical propeller. ("Waveglider," 2022)

Waveglider	
Length	2,5 m
Average Velocity	3 knots
Endurance	1 year
Power Generation	Renewables

Mariner X

Mariner X		
Length	9 m	
Average Velocity	8 knots (kn), max 12 kn	American
Endurance	25 days	
Power Generation	Diesel	

Multi-purpose USV made by Maritime Robotics. Made to operate for offshore and coastal applications. ("Mariner X," 2022)

SEA-KIT H - Zero-emission vessel

SEA-KIT-H	
Length	12 / 15 meters
Average Velocity	6 knots
Endurance	23 days or 3300
	nautical miles
Power Generation	-

British made USV with composite hull. The vessel is currently equipped with a diesel generator, but the company plans to install hydrogen fuel cell in 2022/2023. Made to conduct hydrographic research, seafloor mapping or maritime ISR. (Skopljak, 2022)

Protector USV

Protector USV	
Length	9 / 11 meters
Maximum Velocity	50 knots
Endurance	400 nautical miles at 30 knots
Power Generation	Diesel

The Protector is a highly independent remote controlled USV produced by Rafael Advanced Defense Systems. The vessel is currently in use by the Singapore and Israeli Navy. The USVs design is reconfigurable and enables the vessel to perform different tasks as force protection, firefighting, ISR, naval warfare, mine countermeasures and maritime harbour security missions. ("Protector USV ", 2013)

Appendix B - Choice of sensors

This thesis will not address technical solutions for sensors or its use. The choice of sensors is on the other hand fairly decisive for the design of the hull, and we therefore feel compelled to address the subject.

Selected sensors

In conversation with staff at the Royal Norwegian Naval Academy, we have opted to keep this information on a general level and rely on commercially available technology. Furthermore, it is important to understand that sonar operations and sensors are highly complicated. Implementation should not be done without careful testing and analysis by professionals.

Sonar stands for sound navigation and ranging and can be used in detecting and tracking submarines. The performance of sonar operations is heavily affected by weather, amount of biomass in the ocean, use of bandwidth, energy usage, techniques, placement and type of sensors, generic noise pollution, temperature, depth, and bottom conditions.

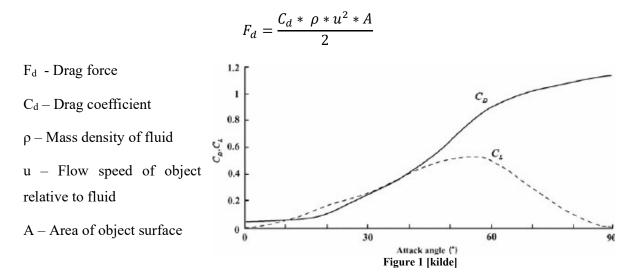
Sensor	Name			Technical data
Passive	Compact	LF	Active	Weight: 1,5 tonn
Variable	VDS			Maximum depth: 10-300 m
depth sonar				
Sonar buoys				

Based on described capabilities we have chosen to go with a passive towing sonar. Our passive sonar is based on the commercially available TRAPS and Compact LF Active VDS from GeoSpectrum Technologies. The newest version is reported fitted to USVs and capable of doing unmanned missions with active sensors (Scott, 2020). Passive sonars are nothing new and equipping the USV with a passive towable sensor would provide the USV with capability to detect and track submarines.

Utilizing new sensors may pose a major risk in terms of performance. Equipping the USV with a towable new passive sonar is considered high risk with regards to performance and time for implementation.

Energy consumption

By mail, Geospectrum Technologies have defined consumption for their passive TRAPS and winching the cable as:


2-4 kW for passive sonar

7 kW for winching the cable in

Their maximum tow cable is 280 m with an 18,5 mm diameter and we estimate the passive sensor length to be a total of 250 m with 40 mm diameter. The consumption with regard to winching is to be considered an estimate as the winching is not specified at a given speed. Winching in 5 knots would provide higher total resistance and raise overall energy usage.

Calculation of drag

Towing a sonar in water poses extra resistance and we have therefore stipulated the drag force required to tow the sonar in water during 5 knots velocity. Drag force is given by the formula

In order to estimate a drag force for the passive sensor we need the drag coefficient for the cable. If we estimate the attack angle of the tow cable is 35 degrees, we will get drag coefficient 0,4. The sensor length will have attack angle from 0-10 degrees and drag coefficient will then be 0,1.

Cd		0,1		Cd		0,4	
Tetthet		1025	kg/m^3	Density		1025	kg/m^3
Speed		5	knots	Speed		5	knots
Velocity		2,57	m/s	Velocity		2,57	m/s
Rope diameter		45	mm	Rope diameter		18,4	mm
Rope circumfere	nce	0,006362	m	Rope circumference		0,001064	m
Length		250	m				
					Area [m^2]	Fd [N]	
				Rope Length 100 m	0,11	144,26	N
	Area [m^2]	Fd [N]		Rope Length 200 m	0,21	288,53	N
Sensor package	1,59	539,29	N	Rope Length 280 m	0,30	403,94	N

Table 2 Calculation of drag on sensor

Table 1 Calculation of drag on cable

Based on given data from GeoSpectrum and estimates for drag coefficient, we have derived an Rts for the sensor to be approximately 1 kN. This drag force will be influenced by speed through water, sea states, cable attack angle on water and length of towing cable in water. Furthermore, this estimate will be good enough as a starting point for further dimensioning our vessel.

Appendix C – DELFTship data

Appendix C includes design hydrostatics rapport, hydrostatics, resistance and cross curves on both preliminary design and optimized design. Linesplan for the preliminary and optimised design is given as separate appendixes as they are dimensioned for printing in A3 sheets.

Preliminary design

Design hydrostatics report

Design hydrostatics report

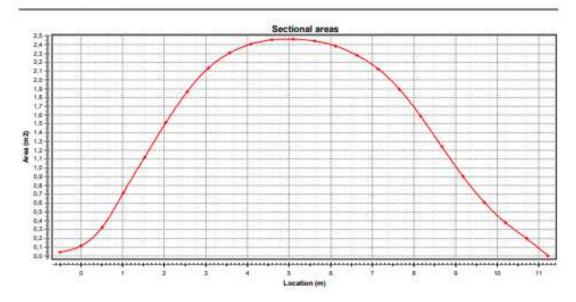
Parent 22 - Sterntrawler

Designer	Unknown			
Created by	M. van Engeland			
Comment				
Filoname	Parent 223 fbm			
Design leng	jth	10,800 m	Midship location	5,400 m
Length over	r all	12,330 m	Water density	1,0250
Design bear	171	2,800 m	Mean shell thickness	0,0020 m
Maximum b	ocam.	2,819 m	Appendage coefficient	1,0000
Design draf	t	0,960 m	10 - 45.	

Volume propert	ies	Waterplane properties		
Moulded volume	17,033 m ³	Length on waterline	11,553 m	
Total displaced volume	17,107 m ³	Beam on waterline	2,818 m	
Displacement	17,535 t	Entrance angle	69,1 deg	
Block coefficient	0,5311	Waterplane area	24,13 m ³	
Prismatic coefficient	0,5857	Waterplane coefficient	0,7191	
Vert. prismatic coefficient	0,7353	Waterplane center of floatation	4,843 m	
Wetted surface area	37,21 m ³	Transverse moment of inertia	12,047 m ⁴	
Longitudinal center of buoyancy	5,254 m	Longitudinal moment of inertia	178,036 m ⁴	
Longitudinal center of buoyancy	-1,268 #			
Vertical center of buoyancy	0,547 m			
Total length of submerged body	11,905 m			
Total beam of submerged body	2,818 m			

Midship properties		Initial stability		
Midship section area 2,45 m ³		Transverse metacentric height	1,254 m	
Midship coefficient	0,9067	Longitudinal metacentric height	10,999 m	

Lateral plane	
Lateral area	9,96 m ³
Longitudinal center of lateral resistance	5,563 m
Vertical center of lateral resistance	0,505 m


The following layer properties are calculated for both sides of the ship

Location	Area	Thickness	Weight	LCG	TCG	VCG
	m ²	00000000000000000000000000000000000000	Sec. all	m	101	m
Hult	67,13	0,040	4,565	5,500	0,000 (CL)	0,882
Superstructure	34,00	0.000	0,000	5,000	0.000 (CL)	2,188
Superstructure tower	14,70	0.000	0,000	5,448	0,000 (CL)	2,798
Towing sonar	16,11	0,000	0,000	0,220	0,000 (CL)	1,877
Battery	11,32	0,000	0.000	6,843	0,000 (CL)	0,243
Generator	6,02	0,000	0,000	7,792	0,600 (CL)	0,770
El Engines	1,77	0,000	0,000	2,490	0,000 (CL)	0,460
Shaft	1,10	0,000	0,000	1,601	0,000 (CL)	0,456
Counter weight	0,69	0,000	0,000	10,685	0,000 (CL)	0,296
Total	152,84		4.565	5,500	0.000 (CL)	0,882

Sectional areas									
Location	Area	Location	Area	Location	Area	Location	Area	Location	Area
(77)	771-2	777	mi	171	1777	777	m^2	171	(77)2
-0,510	0,04	2,040	1,52	4,590	2,46	7,140	2,13	9,691	0.61
0,000	0.12	2,550	1,87	5,100	2,46	7,651	1,89	10,201	0,38
0,510	0,33	3,060	2,13	5,610	2,44	8,161	1.59	10,711	0,20
1,020	0,72	3,570	2,31	6.120	2,38	8,671	1,24	11,221	0,00
1,530	1,12	4,080	2,41	6,630	2.28	9,181	0,90		

05.12.2022 DELFTship 14.30 (344)

Design hydrostatics report

NOTE 1: Draft (and all other vertical heights) is measured from base Z=0,000 NOTE 2: All calculated coefficients based on actual dimensions of submerged body.

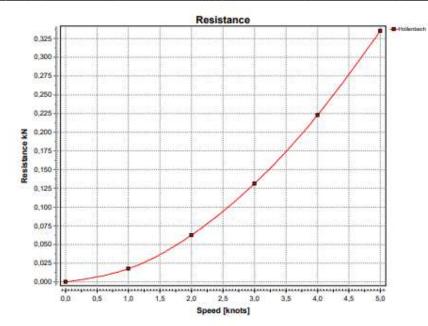
Hydrostatics

Water density : 1,0250 Mean shell thickness : 0,0020 m

Trim: 0,000 n	Trim:	0,	000	n	7
---------------	-------	----	-----	---	---

Draft	Volume	Displ FW	Displ	LCB	VCB	TC8	Aw	LCF	KMt	KM	MCT	TpCm
m	m	- Constanting	1	111	IT	III.	Π^{\pm}	[11]	(11)	(11)	110	lonno/cm
0,000	0.000	0,000	0,000	0,000	0.000	0,000	0,00	0,000	0,000	0,000	0,000	0,000
0,100	0,705	0,705	0,722	5,387	0,064	0,000	11,77	5,386	3,786	78,525	0,052	0,121
0,200	2,080	2,060	2,132	5,392	0,123	0,000	15,17	5,400	2,598	35,625	0,070	0,155
0,300	3,701	3,701	3,794	5,396	0,179	0,000	17,07	5,398	2,037	23,367	0,081	0,175
0,400	5,473	5,473	5,610	5,393	0,235	0,000	18,28	5,375	1,711	17,300	0,089	0,187
0,500	7,345	7,345	7,529	5,384	0,290	D/000	19,13	5,338	1,506	13,763	0,094	0,198
0,600	9,295	9,295	9,528	5,370	0,345	0,000	19,88	5,294	1,380	11,699	0,100	0,204
0,700	11,323	11,323	11,606	5,351	0,400	0,000	20,69	5,235	1,306	10,570	0,109	0,212
0,800	13,442	13,442	13,778	5,326	0,455	0,000	21,72	5,136	1,265	10,203	0,124	0,223
0,900	15,686	15,686	16,078	5,286	0,512	0,000	23,21	4,954	1,252	10,707	0,152	0,238
1,000	18,083	18,083	18,536	5,230	0,570	0,000	24.66	4,790	1,258	11,047	0,180	0,25

NOTE 1: Draft (and all other vertical heights) is measured from base Z=0,000

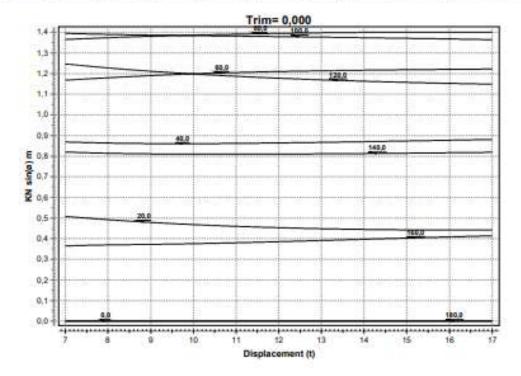

NOTE 2: All calculated coefficients based on actual dimensions of submerged body.

Nomenci	Nomenclature			
Draft	Maulaked ahall, measured from baseline			
Volume	Total displaced volume			
Displ FW	Displacement itesh water			
Displ	Displacement			
LCB	Longitudinal center of buoyancy: measured from the aft perpendicular at X=0.0			
VCB	Viertical conter of buoyancy			
TCB	Transverse cienter of buoyancy			
Ann	Minterplane ana			
LCF	Waterplane center of floatation, measured from the aff perpendicular at X=0.0			
KIMI	Transverse metacentric height			
KME	Longitudinal metacontric height			
MCT	Mament to change trim one unit			
TpCm	Weight to change the Immusion with one unit			

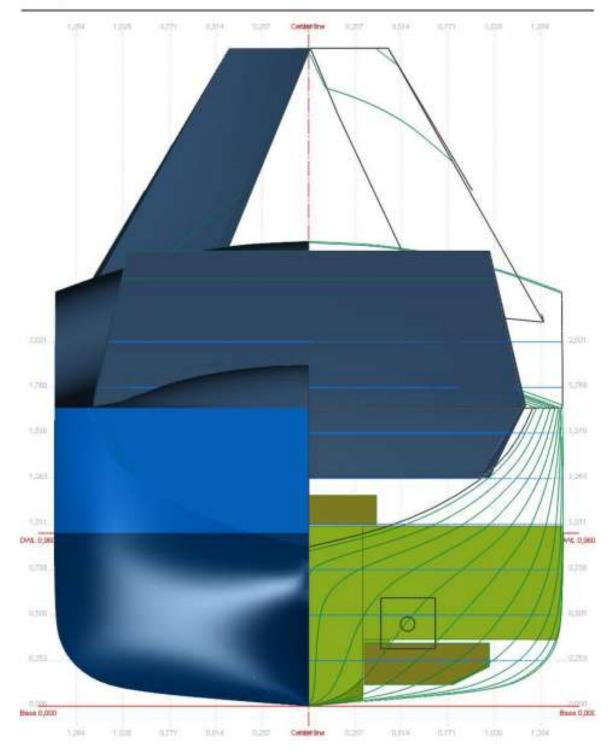
Resistance calculations.

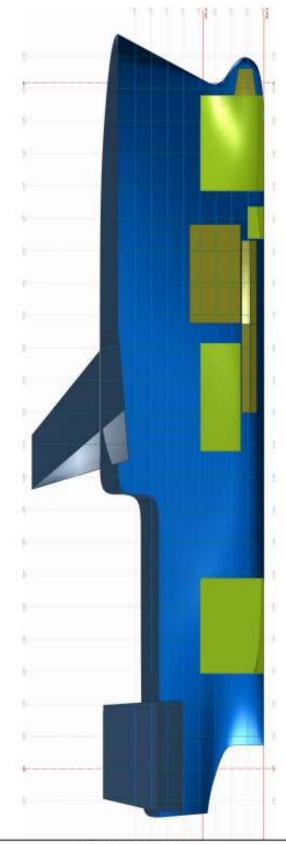
Hollenbach.

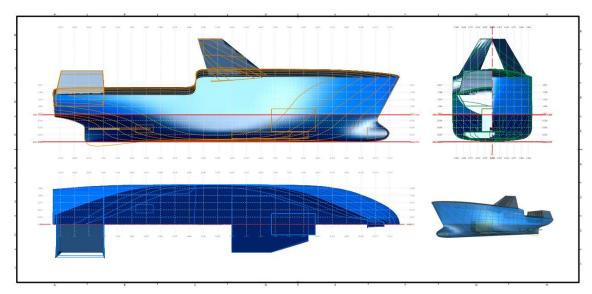
Resistance according to Hollenbach						
Speed kn	Speed m/sec	Froude number	Frictional resistance	Residual resistance	Total resistance	Effective power
0,00	0,00	0,000	0,0000	0,0000	0,0000	0,00
1,00	0,51	0,04B	0,0177	0,0000	0,0177	0,01
2,00	1,03	0,097	0,0626	0,0000	0,0626	0,06
3,00	1,54	0,145	0,1313	0,0000	0,1313	0,20
4,00	2,06	0,194	0,2226	0,0000	0,2226	0,46
5,00	2,57	0,242	0,3354	0,0000	0,3354	0,86

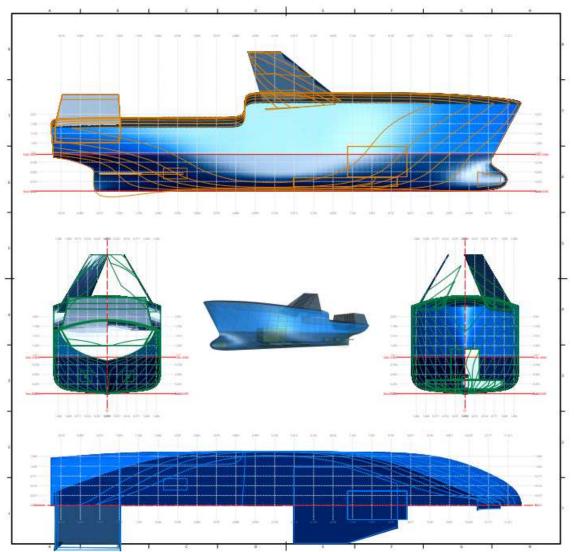


01.12.2022 DELFTship 14.30 (344)


Cross curves


Displ.	Draft	0,0	20,0	40,0	60,0	80,0	100,0	120,0	140,0	160,0	180,0
t :	(m)	degr	degr	dogr	tiluge"	dog	degr	thegr	degr	degr	dugr
7,000	0,473	0,000	0,508	0.869	1,168	1,365	1,395	1,247	0,820	0.365	0,000
8,000	0,524	0,000	0,492	0,863	1,180	1,374	1,390	1,227	0,814	0,370	0,000
9,000	0,574	0,000	0,479	0,861	1,190	1,381	1,387	1,212	0,811	0,372	0,000
10,000	0,623	0,000	0,468	0.860	1,199	1,387	1,384	1,198	0,809	0,376	0,000
11,000	0,671	0,000	0,460	0,862	1,205	1,391	1,382	1,187	0,809	0,380	0,000
12,000	0,718	0,000	0,453	0,864	1,210	1,395	1,379	1,178	0,810	0,385	0,000
13,000	0,765	0,000	0,448	0.867	1,214	1,398	1,377	1,170	0,811	0,391	0,000
14,000	0.870	0,000	0,445	0.870	1,216	1,400	1,374	1,163	0,813	D,397	0,000
15,000	0,854	0,000	0,443	0,873	1,219	1,401	1,371	1,157	0,814	0,403	0,000
16,000	0,897	0,000	0,442	0,877	1,221	1,401	1,368	1,153	0,816	0,408	0,000
17,000	0.938	0.000	0.441	0.881	1,222	1,400	1,365	1,149	0.818	0,414	0.000


6


DELFTship - Aft view

09.12.2022 DELFTship 14.30 (344)

Optimised design

Design hydrostatics report

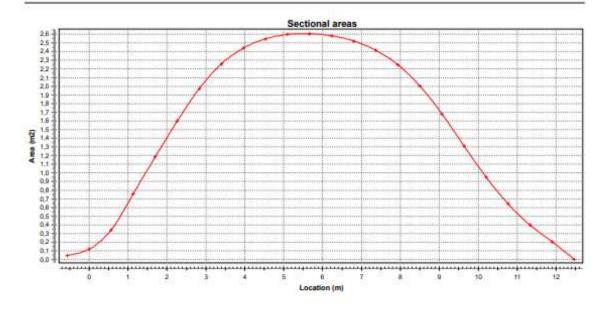
Design hydrostatics report

Parent 22 - Sterntrawler

Designer	Unknown			
Created by	M. van Engeland			
Comment				
Filename	Parent 22 fourth.fbm			
Design leng	jth	12,000 m	Midship location	6,000 m
Length over	alt	13,700 m	Water density	1,0250
Design bear	m	2,650 m	Mean shell thickness	0,0000 m
Maximum b	beam	2,668 m	Appendage coefficient	1,0000
Design draf	1	1,077 m		

Volume properties		Waterplane properties				
Moulded volume	20,095 m ³	Length on waterline	12,837 m			
Total displaced volume	20,095 m ²	Beam on waterline	2,667 m			
Displacement	20,597 t	Entrance angle	63,6 deg			
Block coefficient	0,5288	Waterplane area	25,32 m ²			
Prismatic coefficient	0,5852	Waterplane coefficient	0,7177			
Vert. prismatic coefficient	0,7368	Waterplane center of floatation	5,381 m			
Wetted surface area	42,29 m ²	Transverse moment of inertia	11,347 m ⁴			
Longitudinal center of buoyancy	5,837 m	Longitudinal moment of inertia	231,163 m*			
Longitudinal center of buoyancy	-1,268 #					
Vertical center of buoyancy	0,613 m					
Total length of submerged body	13,228 m					
Total beam of submerged body	2,667 m					

Midship properties		Initial stabilit	Initial stability		
Midship section area	2,60 m ²	Transverse metacentric height	1,178 m		
Midship coefficient	0,9036	Longitudinal metacentric height	12,117 m		


Lateral plane	
Lateral area	13,08 m ²
Longitudinal center of lateral resistance	6,179 m
Vertical center of lateral resistance	0,539 m

The following layer properties are calculated for both sides of the ship

Location	Area	Thickness	Weight	LCG	TCG	VCG
	m^2	m	t	m	m	m
Hull	73,01	0,035	5,111	6,123	0,000 (CL)	0,928
Hull superstructure	40,35	0,000	0.000	5,055	0,000 (CL)	2,385
Superstructure tower	5,55	0,000	0,000	8,485	0,000 (CL)	3,295
EI. Engine	1,84	0,000	0,000	3,646	0,000 (CL)	0,339
Generator	6,04	0,000	0,000	8,778	0,000 (CL)	0,803
Shafts	1,45	0,000	0,000	1,651	0,000 (CL)	0,333
Propeller Nozzles	0,39	0,000	0,000	-0,055	0,000 (CL)	0,324
Counterweight	0,94	0,000	0,000	11,881	0,000 (CL)	0,342
TRAPS Sonar	15,66	0,000	0,000	0,051	0,001 (PS)	2,000
Total	145,24		5,111	6,123	0,000 (CL)	0,928

	Sectional areas										
Location	Area	Location	Area	Location	Area	Location	Area	Location	Area		
125	mT	m	m^2	101	m^{π}	775	im ²	111	m^3		
-0,567	0,04	2,267	1,60	5,100	2,60	7,934	2,25	10,767	0,64		
0,000	0,12	2,834	1,97	5,667	2,61	8,501	2,00	11,334	0,40		
0,567	0,34	3,400	2,26	6,234	2,58	9,067	1,68	11,901	0,20		
1,133	0,76	3,967	2,44	6,800	2,52	9,634	1,31	12,468	0,00		
1,700	1,18	4,534	2,55	7,367	2.41	10,201	0,95				

12.12.2022 DELFTship 14.30 (344)

NOTE 1: Draft (and all other vertical heights) is measured from base Z=0,000 NOTE 2: All calculated coefficients based on actual dimensions of submerged body.

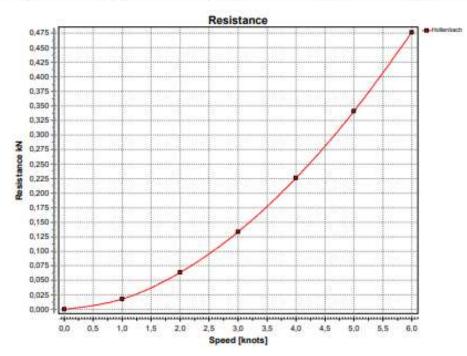
Hydrostatics

Water density : 1,0250

Trim: L	7,000 m
---------	---------

raft	Volume	Dispi FW	Displ.	LCB	VCB	TCB	Aw	LCF	KMt	KMI	MCT	TpCm
171	m	T	1	ITT	m	m	m [‡]	m	713	TT5	1*m	tonne/cm
000	0,000	0,000	0,000	0,000	0,000	0,000	0,00	0,000	0,000	0,000	0,000	0,000
100	0,657	0,657	0,673	5,986	0,065	0,000	11,60	5,981	3,097	98,977	0,056	0,119
200	2,035	2,035	2,085	5,989	0,124	0,000	15,33	6,000	2,260	44,454	0,077	0,157
300	3,676	3,676	3,768	5,995	0,181	0,000	17,36	6,001	1,795	28,993	0,090	0,178
400	5,482	5,482	5,619	5,995	0,237	0,000	18,69	5,986	1,533	21,476	0,099	0,192
500	7,399	7,399	7,584	5,989	0,292	0,000	19,61	5,956	1,366	17,023	0,106	0,201
600	9,397	9,397	9,632	5,977	0,347	0,000	20,35	5,918	1,262	14,240	0,112	0,209
700	11,466	11,466	11,752	5,962	0,402	0,000	21,04	5,868	1,200	12,486	0,118	0,216
800	13,609	13,609	13,949	5,942	0,457	0,000	21,84	5,806	1,168	11,541	0,129	0,224
900	15,840	15,840	16,236	5,917	0,512	0,000	22,82	5,704	1,158	11,243	0,145	0,234
000	18,187	18,187	18,642	5,878	0,569	0,000	24,21	5,526	1,164	11,723	0.173	0,249

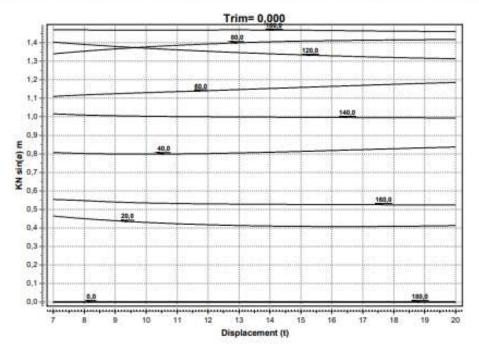
NOTE 1: Draft (and all other vertical heights) is measured from base Z=0,000

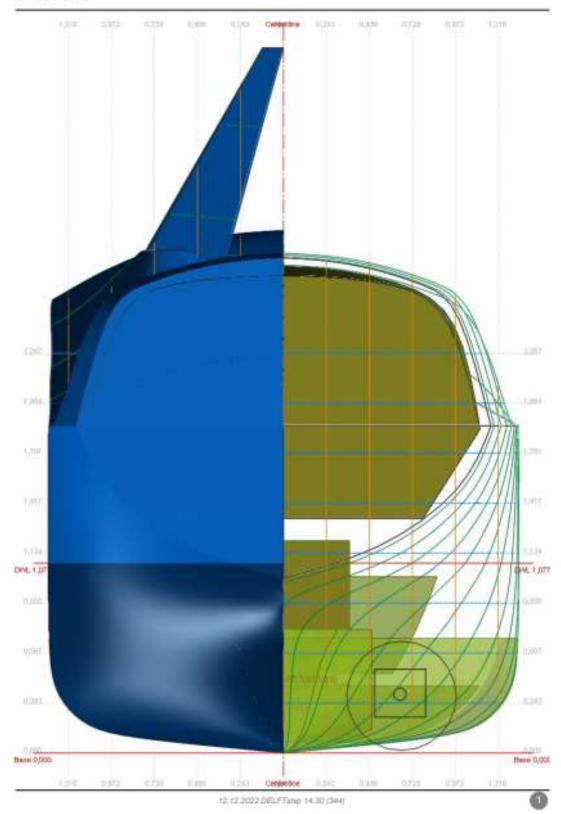

NOTE 2: All calculated coefficients based on actual dimensions of submerged body.

Nomenclature						
Draft	Moulded draft, measured from baseline					
Volume	Total displaced volume					
Displ FW	Displacement fresh water					
Displ.	Displacement					
LCB	Longitudinal center of buoyancy, measured from the aft perpendicular at X=0.0					
VCB	Vertical center of buoyancy					
TCB	Transverse center of buoyancy					
Aw	Waterplane area					
LCF	Waterplane center of Roatation, measured from the all perpendicular at X=0.0					
KMI	Transverse metacentric height					
KMI	Longitudinal metacentric height					
MCT	Moment to change trim one unit					
TpCm	Weight to change the immersion with one unit					

Resistance calculations.

Hollenbach.

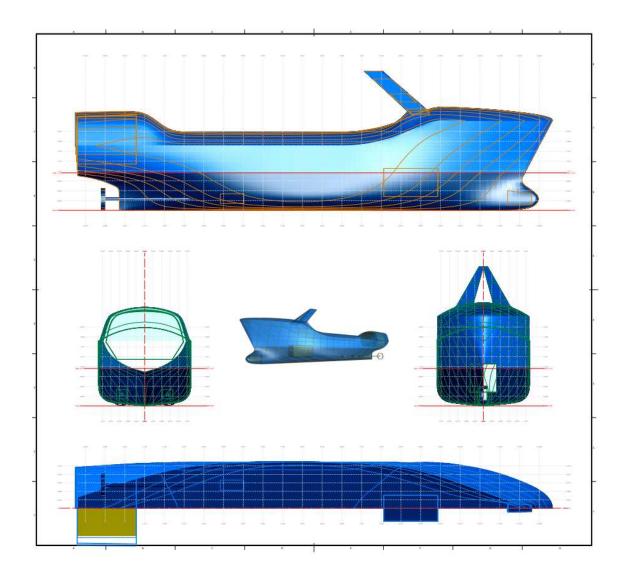

	Resistance according to Hollenbach										
Speed	Speed	Froude number	Frictional resistance	Residual resistance	Total resistance	Effective power					
kr)	m/hec		kN	1.N	λN.	kW					
0,00	0,00	0,000	0,0000	0,0000	0,0000	0.00					
1.00	0,51	0,046	0,0179	0,0000	0,0179	0,01					
2,00	1,03	0,092	0,0634	0,0000	0,0634	0.07					
3.00	1,54	0,138	0,1333	0,0000	0,1333	0,21					
4,00	2,06	0,184	0,2260	0,0000	0,2260	0,47					
5,00	2,57	0,230	0,3407	0,0000	0,3407	0,88					
6.00	3,09	0,275	0,4766	0,0000	0,4766	1,47					


Cross curves

Displ.	Draft	0,0	20,0	40,0	60,0	80,0	100,0	120,0	140,0	160,0	180,0
1	191	degr	degr	degr	degr	dear	degr	degr	degr	degr	dégr
7,000	0,471	0,000	0,464	0,807	1,110	1,340	1,471	1,403	1,016	0,554	0,000
B,000	0,521	0,000	0,450	0,802	1,118	1,354	1,469	1,391	1,010	0,547	0,000
9,000	0,570	0,000	0,439	0,800	1,125	1,367	1,469	1,380	1,006	0,540	0,000
10,000	0,618	0,000	0,430	0,799	1,130	1,377	1,469	1,370	1,003	0,535	0,000
11,000	0,665	0,000	0,423	0,800	1,136	1,386	1,469	1,362	1,001	0,532	0,000
12,000	0,711	0,000	0,417	0,802	1,141	1,393	1,469	1,354	1,000	0,530	0,000
13,000	0,757	0,000	0,413	0,805	1,147	1,400	1,469	1,347	0,999	0,528	0,000
14,000	0,802	0,000	0,410	0,809	1,153	1,405	1,469	1,340	0,998	0,527	0,000
15,000	0,847	0,000	0,408	0,813	1,159	1,409	1,468	1,335	0,997	0,527	0,000
16,000	0,890	0,000	0,408	0,818	1,164	1,411	1,466	1,329	0,997	0,526	0,000
17,000	0,932	0,000	0,408	0,823	1,170	1,413	1,464	1,325	0,996	0,525	0,000
18,000	0,974	0,000	0,409	0,828	1,175	1,415	1,463	1,320	0,995	0,525	0,000
19,000	1,014	0,000	0,410	0,832	1,181	1,416	1,462	1,316	0,994	0,524	0,000
20,000	1.054	0.000	0.412	0.837	1,186	1,418	1,461	1,313	0.993	0,524	0,000

0

DELFTship - Aft view



12.12.2022 DELFTship 14.30 (344)

0

Appendix D - Drive train, energy production and energy storage

This appendix will cover general specifications of engine, generator, fuel, lubrication oil and battery.

Engine

This section contains technical data regarding DriveMaster 15W.

Belmarine powered by Transfluid

Figure 2: Drivemaster data (Bellmarine)

Master Info

- 1 -All motors are Permanent Magnets AC, high efficiency, IP65
- 2 Intermittent kW: S3 10% 10' (1 minute at intermittent power then reduced for 9 minutes power to return to stable temperature)
- 3 Battery: 48V, 96V and 144V can be of any chemistry and brand; 288V and 384V need to be Transfluid's battery.

BATTERY	max [Vdc]	min [Vdc]
48	61	44
96	115	82
144	169	121
288	346	247
384	462	330

To evaluate the battery characteristics in case of customer's supply please use the following formula giving the max (A) current required by Transfluid's motors:

 $I(A) = \frac{kW \times 1000}{V} \times 2$

4 - RATINGS:

- Cruising speed: 70% of rated motor rpm Light Duty: air cooled motor, up to 200 hours/year, intermittent kW allowed Medium Duty: air cooled motor, up to 500 hours/year, only nominal kW allowed Medium Duty: liquid cooled motor, up to 1000 hours/year, intermittent kW allowed
- Heavy Duty: liquid cooled motor, up to 3000 hours per year, intermittent kW allowed, max 80% of time at rated rpm and load
- 5 Separate thrust bearing is recommended above 20 kW
- T (Nm) = <u>kW</u> x 9550 6 - For Torque calculation use the formula:

Figure 3: Drivemaster data (Bellmarine)

Generator

Whisper power: M-SQ Pro 25 Maritime Generator (WhisperPower)

Estimated price from commercial dealers is 40,000 Eur.

Figure 4: Whisper Power - M-SQ Pro 25

25-11-2022

ARTICLE NUMBER

41202005

M-SQ Pro 25, 230 VAC, 1 ph, 50 Hz (60 Hz)

MAIN SPECIFICATIONS

Intermittent Power kW at 25°C (77°F)	25 kW
Continuous Power kVA at 25°C (77°F)	27 kVA
Continuous Power kW at 25°C (77°F)	22.5 kW
Noise level	58 dB
Rpm range	1500/1800 rpm
Cooling	Indirect water cooled
Alternator voltage regulation	AVR + EBS, forced ventilation
Nominal voltage / frequency	230 VAC, 1 ph, 50 Hz (60 Hz)
Peak power 2 s	300%
Harmonic distortion	
Frequency tolerance	+/- 5 %

DIESEL ENGINE SPECIFICATIONS

Engine	WhisperPower Mitsubishi S4S - 4 cylinder
Cylinder volume	3331 cc
Bore & stroke, mm (in.)	94 x 120 (3.7 x 4.7)
Air consumption	2.8m3/min
Cooling system	indirect
Fuel consumption (no load - full load)	1-6 l/hr
starter battery charge current	12 V / 40 A

DIMENSIONS & WEIGHT

Length x width x height (cabinet), r	mm (in.) 1555 x 749 x 805 (61.2 x 29.5 x 31.7)
Dry weight, kg (lb.)	640 (1411)
Dry exhaust / wet exhaust	Ø 2 inch BSP / Ø 63 mm
Oil dipstick	Top & side
Max. operating angle	25° in all directions

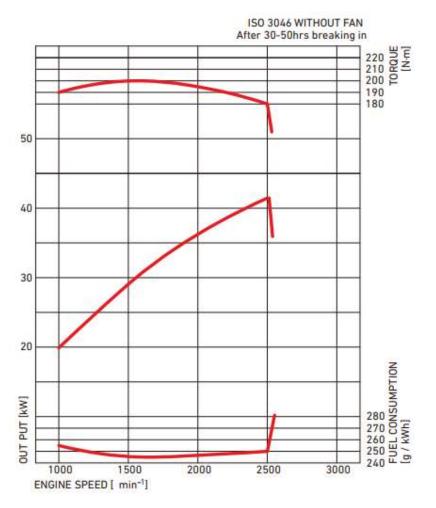


Figure 5: Performance Curve of the Mitsubishi S4S-Z365SP in Gen set

The total efficiency of the generator and combustion engine in a towing condition, 5 knots, based on the data provided by manufacturer:

$$\eta_{Gen} = \frac{P_e}{m_b * h_n} = \frac{22,5 * 3600}{4,4 * 42,76 * 10^3} = 0,43$$

$$\eta_{C.Eng} = \frac{P_e}{m_b * h_n} = \frac{35 * 3600}{4,4 * 42,76 * 10^3} = 0,67$$

The above values are estimated based on values of fuel consumption from the manufacturer. However, the values used in the estimation will be 0,4 for the generator and 0,55 for the combustion engine. Fuel

The choice of fuel will be standard diesel fuel based on the below average values and standard values of Bunker Oil, the main distributer of fuel for the Royal Norwegian Navy.

				Diesel	oljer		Tung	oljer.	14
		Bensiner	Petroleum	Gassolje	Diesel	Fyringsolje nr.			
					oil	3	4	5	6
	Karbon (c)	84,6	86,4	86,5	86,3	86,0	85,8	85,8	85,7
Kjemisk	Hydrogen (h)	14,9	13,4	12,9	12,7	11,8	11,6	11,5	11,4
sammen-	Svovel (s)	-	0,05	0,45	0,8	1,9	2,1	2,2	2,2
etning, nasse-	Nitrogen (n) + oksygen (o)	0,5	0,15	0,15	0,15	0,1	0,1	0,1	0,1
prosent	Vann Metalloksyder		-	-	0,04	0,1	0,2	0,2	0,3
	(aske)	-	-	-	0,01	0,1	0,2	0,2	0,3
Teoretisk	Nm ³ /kg	11,5	11,25	11,15	11,05	10,85	10,80	10,75	10,7
luftbehov	kg/kg	14,85	14,6	14,4	14,3	14,05	14,0	13,9	13,85
Kal. brenny	erdi, MJ/kg	46,9	46,5	45,6	45,2	43,5	43.1	42,7	42,3
	kcal/kg	11200	11100	10900	10800	10400	10300	10200	1010
Eff. brenny	erdi, MJ/kg	43,5	43,3	42,7	42,3	41.0	40,6	40,2	39,8
	kcal/kg	10400	10350	10200	10100	9800	9700	9600	9500
Tetthet, kg		0,73	0,78	0,83	0,85	0,93	0,95	0,96	0,97
Oktantall (1	esearch)	90, 100	50	1.00	1000				
Cetantall		and the second second	40	53	45	35	30	30	25

Table 3: Average value of chemical composition and properties of relevant fuel types. (Lundby, 1979)

Parameter	Data
Туре	Marine Gas Oil
Dencity [p]	855 kg/m ³
Lower heating value [h _n]	42,7 MJ/kg

Figure 6 : Estimation of average Marine Gas oil values (BunkerOil, 2021).

Lubrication Oil

Description:

"49 NORTH ARCTIC SYNTHETIC HEAVY DUTY ENGINE OIL Is specially formulated from low volatility synthetic fluids and a specialized additive system to provide excellent fluidity for extreme cold weather (-40°C) start up, while maintaining the vicosity required to provide the necessary protection of critical parts during high temperature operations." (Lubricants).

TYPICAL PROPERTIES	
SAE Viscosity Grade	0W-30
Product Code	1403
API Service	CJ-4 / SN
API Gravity	35.8
Density, lbs / gallon	7.042
Viscosity, Kinematic	
cSt @ 40°C	59.34
cSt @ 100°C	10.92
Viscosity Index	178
Cold Crank Simulator	
P@-35°C	4475
Pour Point, °C	-51
Flash Point, °C	226
Colour,	3.0
TBN, ASTM D2896	10.0

Figure 7: 49 North Arctic Synthetic heavy duty engine oil, 0W-30.

Battery

Tesla 4680 Battery-Cell, Model-Y

Energy density estimation

Item	Data	Remark
Cathode areal capacity	To be determined	
Anode areal capacity	5.5 mAh/cm ² (half cell second cycle)	11 mAh/cm ² for double side
Total electrode area	~330cm * 7.2 cm = 2376 cm ²	Roughly measured inside the glovebox
Total capacity	11 mAh/cm ² *2376 cm ² = 26.136 Ah	
Total energy	26.136 Ah * (3.7 ~3.8 V) ≈ 96~99 Wh	Estimated average voltage
Cell weight	355 g	From lab balance
Energy density	272 Wh/kg ~ 296 Wh/kg	
		-

Table 4: Energy Density of Tesla 4680-Type Cylindrical Lithium-Ion Battery Cell (Kane, 2022).

Model Y Battery Packs with 4680 cells							
Long Range	Standard Range						
69	69						
12	10						
828	690						
98	98						
81,144	67,620						
81.1	67.6						
	Long Range 69 12 828 98 81,144						

@TroyTeslike, 9 Apr 2022

69*12=828 cells 828*98Wh= 81,144 Wh = 81,1 kWh

 Table 5: Estimated values of Model-Y 2022 battery pack from twitter post by Troy Teslike, published on Insideevs (Kane, 2022).

Appendix E – Weight breakdown and cross curves

Preliminary design

Weight breakdown

The preliminary design provides an initial approximation to distribution of weight on the vessel. The weight breakdown is a rough estimation and will have to be confirmed by more detailed calculations on a different stage. Knowledge of simple stability calculations and its abbreviation is expected from readers.

		Abbreviation
12,33	m	Length over all
10,8	m	Length between perpendiculars
2,8	m	Beam
0,96	m	Draught
5,621	m	Longitudinal centre of gravity
0	m	Transverse centre of gravity
0,949	m	Vertical centre of gravity
17,033	m^3	
	10,8 2,8 0,96 5,621 0 0,949	12,33 m 10,8 m 2,8 m 0,96 m 5,621 m 0 m 0,949 m 17,033 m^3

The hulls initial data from Delftship Pro is plotted in the table below.

All components in the vessel is plotted with their placement in the hull. Origo is in the aft perpendicular where the keel starts. The x-axis is parallel to the keel, y-axis is to the side and z-axis is height. Negative y-axis is representing the starboard side. Summing up all the components and their weights produces the vessels total weight and its new centre of gravity in three directions.

In order to secure positive stability in the vertical axis the new VCG is checked against the hulls KMt from hydrostatics. KMt is obtained from Delftship hydrostatics for that hull by means of interpolation of values. When KMt minus VCG is a positive value, it ensures the vessel will stay upright for that specific loading condition.

Trim in the longitudinal and transverse axis is also checked to make sure the vessel doesn't have unwanted trim. Some positive forward trim is desirable to ensure better waterflow around the propeller.

The transverse centre of gravity will stay 0 because of components cancelling each other out.

Lightweight

Weight breakdown all components with internal fluids, additional fuel is excluded. Added 10 % design margin and 5 % building margin.

		-					Placemen	t	Trimming moment		
Components	Quantity	Density [tonn/m^3]	Degree of filling [%]	Volume [m^3]	Weight [tonn]	LCG [m]	TCG [m]	VCG [m]	LCG * W [tonnm]	TCG * W [tonnm]	VCG * W [tonnm]
Main Hull	1				4,565	5,5	0	0,882	25,108	0,000	4,026
Hull Superstructure	1				0,7	5	0	2,188	3,500	0,000	1,532
Superstructure tower	1				0,2	5,448	0	2,798	1,090	0,000	0,560
Electrical engines	2				0,15	2,49	0	0,46	0,374	0,000	0,069
Generator	1				0,65	7,792	0	0,77	5,065	0,000	0,501
Battery	1				1,5	6,848	0	0,243	10,272	0,000	0,365
Shaft	1				0,2	1,6	0	0,456	0,320	0,000	0,091
Counter weight	1				0,5	10,685	0	0,296	5,343	0,000	0,148
TRAPS Slepesonar	1				1,50	0,22	0	1,877	0,330	0,000	2,816
Sonar Buoys	10				0,17	5	0	1,6	0,850	0,000	0,272
Lightweight					10,135				-	1	
Design margin	10 % addition design margin				11,15						
Building margin	5	% additon b	ouilding margi	in	11,71						
Corrected Lightweight					11,71						
Sum					11,71				52,25	0,00	10,38
Centre of gravity	LCG	TCG	VCG							1	
	5,16	0,00) 1,02	2							
Stability requirements		GM > 0								1	
KMt from Hydrostatics		1,287	m								
GM loaded		0,26	5 m							1	
Demand for 0-trim		LCG = LCB								1	
LCB from hydrostatics		5,34									
Difference LCG-LCB		0,18	POS = forward trim								
0-Yaw requirement		TCG = 0									
TCG =	0.00	m	POS = babord								

Standard weight

							Placement	t	Trimming moment			
Components	Quantity	Density [tonn/m^3]	Degree of filling [%]	Volume [m^3]	Weight [tonn]		TCG [m]	VCG [m]	LCG * W [tonnm]	TCG * W [tonnm]	VCG * W [tonnm]	
Main Hull	1				4,565	5,5	0	0,882	25,108	0,000	4,026	
Hull Superstructure	1				0,7	5	0	2,188	3,500	0,000	1,532	
Superstructure tower	1				0,2	5,448	0	2,798	1,090	0,000	0,560	
Electrical engines	2			6 1	0,15	2,49	0	0,46	0,374	0,000	0,069	
Generator	1				0,65	7,792	0	0,77	5,065	0,000	0,501	
Battery	1			1	1.5	6.848	0	0.243	10,272	0,000	0,365	
Shaft	1			1	0.2	1.6	0	0,456	0,320	0,000	0,091	
Counter weight	1			0	0,5	10,685	0	0,296	5,343	0,000	0,148	
TRAPS Slepesonar	1			6	1.50	0.22	0	1.877	0.330	0.000	2.816	
Sonar Buoys	10				0,17	5	0	1,6	0,850	0,000	0,272	
Lightweight					10.135							
Design margin	10	0% addition	design margi		11,15							
Building margin			uilding margi		11,71							
Corrected Lightweight	,	70 aution D	unding margr		11,71							
Aft Fueltank	0.5	0.855	0.95	0.858	0.35	2,255	0	0.513	0.786	0.000	0,179	
Fore Fueltank	0,5	0,855	0.95	0.86	0.35	9.686	0	0.59	3,383	0,000	0.206	
Middel Fueltank	0,5	0,855	0.95	2.897	1.18	5.843	0	0,55	6,875	0,000	0,200	
Service Oil	0,5	0,843	0,95	0,063	0,03	7,749	0	0,133	0,195	0,000	0,003	
										-		
Sum				i.	13,61				63,49	0,00	11,57	
Centre of gravity	LCG	TCG	VCG	2	0 0							
contact of gravity	5,28	1000 00 00 00 00 00 00 00 00 00 00 00 00							l.			
Stability requirements		GM > 0	×									
KMt from Hydrostatics		1.264	m						0 1			
GM loaded		0,30										
Demand for 0-trim		LCG = LCB		2	<u>.</u>							
LCB from hydrostatics		5,323	m						10- 1			
Los nom ny dostatios		225	POS =						<u></u>			
Difference LCG-LCB		0,05	forward trim									
0-Yaw requirement		TCG = 0										
1			POS =	-	1				1			
TCG =	0.00	m	babord									

Weight breakdown for vessel with 50 % fuel.

Fully loaded

Weight breakdown for a fully loaded vessel

	· · · · · · · · ·		а Г		2		Placement	t	Trimming moment		
Components	Quantity	Density [tonn/m^3]	Degree of filling [%]	Volume [m^3]	Weight [tonn]	LCG [m]	TCG [m]	VCG [m]	LCG * W [tonnm]	TCG * W [tonnm]	VCG * W [tonnm]
Main Hull	1				4,565	5.5	0	0.882	25,108	0.000	4.026
Hull Superstructure	1				0.7	5	0	2,188	3,500	0,000	1.532
Superstructure tower	1				0,7	5.448	0	2,798	1.090	0,000	0,560
Supersuucitie tower	1				0,2	J,440	v	2,190	1,090	0,000	0,000
Electrical engines	2				0.15	2.49	0	0.46	0.374	0.000	0.069
Generator	1				0.65	7,792	0	0.77	5.065	0.000	0,501
Battery	1				1.5	6.848	0	0.243	10.272	0.000	0.365
Shaft	1				0.2	1.6	0	0,456	0.320	0.000	0.091
Counter weight	1				0,5	10.685	0	0,296	5,343	0.000	0,148
counter weight					0,5	10,005	0	0,290	5,545	0,000	0,140
TRAPS Slepesonar	1				1.50	0.22	0	1.877	0.330	0.000	2.816
Sonar Buoys	10				0,17	5	0	1.6	0,850	0,000	0,272
Sona Daojs						-		-,0	0,000	0,000	0,272
Lightweight					10.135				1		
Design margin	10	% addition	design margin	1	11.15				1		
Building margin			uilding margin		11.71				-		
Corrected Lightweight	-				11,71						
concered Eight weight											
Aft Fueltank	1	0.855	0.95	0.858	0.70	2,255	0	0.513	1,572	0,000	0.358
Fore Fueltank	1	0.855	0.95	0.86	0.70	9,686	0	0.59	6,766	0.000	0.412
Middel Fueltank	1	0.855	0.95	2.897	2,35	5,843	0	0.687	13,749	0.000	1.617
Service Oil	1	0,843	0.95	0,063	0.05	7,749	0	0,133	0.391	0,000	0,007
Service on	•	0,045	0,25	0,005	0,05	1,142		0,155	0,071	0,000	0,007
Full weight					15.50				-		
Future growth margin		5 % future g	rowth margin		16,28				-		
Corrected Full Weight		, , , , , , , , , , , , , , , , , , ,	, and an an an a		16,28				1		
concercar an oreigne					10,20				S		
Sum				2	16,28				74,73	0,00	12,77
Centre of gravity	LCG	TCG	VCG	2							
Centre of gravity	5.36		and the second se								
	5,50	0,00	0,92	ŝ							
Stability requirements		GM > 0	2	0							
KMt from Hydrostatics		1,253	m		1						
GM loaded		0.34	m		2 9						
			10.0								
Demand for 0-trim		LCG = LCB			1						
LCB from hydrostatics		5,273	m								
			POS =								
Difference LCG-LCB		-0,09	forward trim								
0-Yaw requirement		TCG = 0	4.								
o-raw requirement		100-0	POS =		- 					1	
TCG =	0.00		babord								

Cross curves and stability

In order to calculate stability and the vessels righting arm crosscurved are used to get information of KN $SIN(\emptyset)$ in regard to vessel displacement and healingangle. These values are then used to calculate GZ-arm for each case and plotted in a graph.

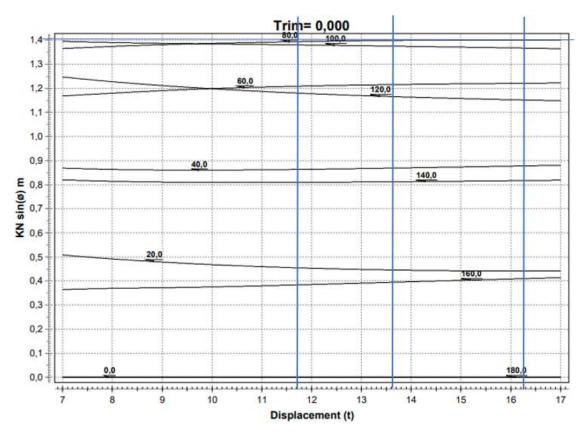


Figure 8: Preliminary vessel crosscurves

Lightweight	GZ	Standard	GZ	Full weight	GZ
0	0,000	0	0,000	0	0,000
20	0,460	20	0,460	20	0,450
40	0,865	40	0,870	40	0,870
60	1,210	60	1,210	60	1,225
80	1,400	80	1,400	80	1,405
100	1,375	100	1,380	100	1,365
120	1,189	120	1,185	120	1,160
140	0,815	140	0,810	140	0,820
160	0,385	160	0,400	160	0,410
180	0,000	180	0,000	180	0,000

Table 6: Data provided from Figure 1



Figure 9: Heeling angle and positive GZ

Optimized design

Weight breakdown

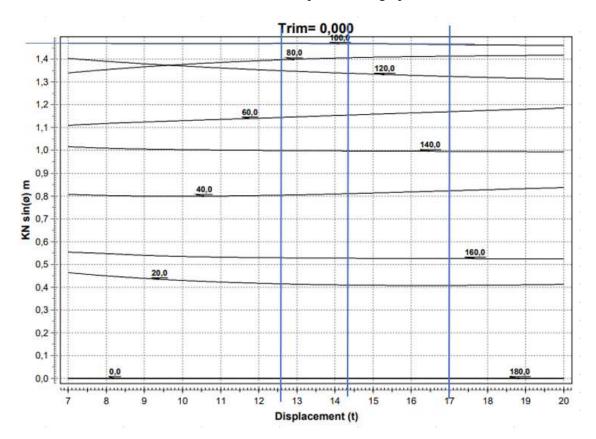
Vessel statistics			Abbreviation
Loa	13,7	m	Length over all
Lpp	12	m	Length between perpendicular
B	2,65	m	Beam
Т	1,077	m	Draught
LCG	6,162	m	Longitudinal centre of gravity
TCG	0	m	Transverse centre of gravity
VCG	1,018	m	Vertical centre of gravity
Total displaced volume	20,095	m^3	0.00

Lightweight

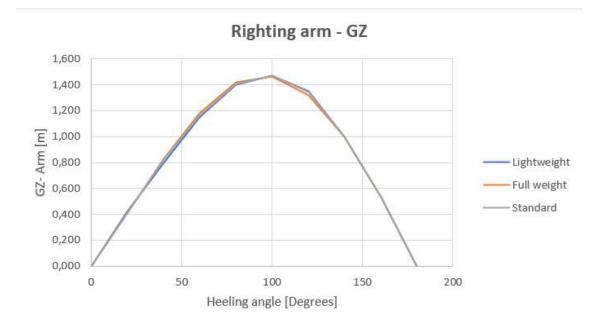
Weight breakdown all components with internal fluids, additional fuel is excluded. Added 10 % design margin and 5 % building margin.

			Degree of filling [%]	Volume [m^3]		Placement		Trimming moment			
Components	Quantity					LCG [m]	TCG [m]	VCG [m]	LCG * W [tonnm]	TCG * W [tonnm]	VCG * W [tonnm]
Main Hull	1				5,111	6,123	0	0,928	31,295	0,000	4,743
Hull Superstructure	1				0,7	5,055	0	2,385	3,539	0,000	1,670
Superstructure tower	1				0,2	8,485	0	3,295	1,697	0,000	0,659
Electrical engines	2				0,15	3,646	0	0,339	0,547	0,000	0,051
Generator	1				0.65	8,778	0	0,803	5,706	0.000	0.522
Battery	1				1.5	9,032	0	0,238	13,548	0,000	0.357
Shaft	2				0,2	1,651	0	0,333	0,660	0,000	0,133
Propeller Nozzles	2				0.2	-0,055	0	0,324	-0,022	0,000	0,130
Counter weight	1				0,5	11,873	0	0,342	5,937	0,000	0,171
TRAPS Slepesonar	1				1.50	0.051	0	2	0.077	0.000	3.000
Sonar Buoys	10				0,17	5	0	1,6	0,850	0,000	0,272
Lightweight					10,881						
Design margin	1	0 % addition	design margi	n	11,97	1					
Building margin	5	% additon b	uilding margin	n	12,57						
Corrected Lightweight					12,57						
Sum					12,57				63,83	0,00	11,71
Centre of gravity	LCG 5,87	TCG 0,00	VCG 1,08								
Stability requirements		GM > 0									
KMt from Hydrostatics		1,184	m								
GM loaded		0,11	m								
Demand for 0-trim		LCG = LCB									
LCB from hydrostatics		5,952	m								
Difference LCG-LCB		0,09	POS = forward trim								
0-Yaw requirement		TCG = 0									
TCG =	0,00	m	POS = babord								

Standard Weight


Components		Density [tonn/m^3]		Volume [m^3]		Placement			Trimming moment		
	Quantity		Degree of filling [%]			LCG [m]	TCG [m]	VCG [m]	LCG * W [tonnm]	TCG * W [tonnm]	VCG * W [tonnm]
Main Hull	1				5,111	6,123	0	0.928	31,295	0.000	4,743
Hull Superstructure	1				0.7	5.055	0	2.385	3.539	0.000	1,670
Superstructure tower	1				0,2	8,485	0	3,295	1,697	0,000	0,659
Electrical engines	2				0.15	3,646	0	0.339	0,547	0.000	0.051
Generator	1				0,65	8,778	0	0,803	5,706	0.000	0.522
Batterv	1				1.5	9.032	0	0.238	13,548	0.000	0.357
Shaft	2				0.2	1.651	0	0.333	0.660	0.000	0.133
Propeller Nozzles	2				0.2	-0,055	0	0,324	-0,022	0,000	0,130
Counter weight	1				0,5	11,873	0	0,342	5,937	0,000	0,171
TRAPS Slepesonar	1				1,50	0,051	0	2	0,077	0,000	3,000
Sonar Buoys	10				0,17	5	0	1,6	0,850	0,000	0,272
Lightweight					10,881						
Design margin	10	% addition	design margi	n	11,97						
Building margin	5	% additon b	uilding margin	n	12,57						
Corrected Lightweight					12,57						
Aft Fueltank	0,5	0,855	0,95	0,795	0,32	1,909	0	0,404	0,616	0,000	0,130
Fore Fueltank	0,5	0,855	0,95	0,856	0,35	10,281	0	0,745	3,574	0,000	0,259
Middel Fueltank	0,5	0,855	0,95	2,756	1,12	6,577	0	0,367	7,362	0,000	0,411
Service Oil	0,5	0,843	0,95	0,035	0,01	7,8	0	0,55	0,109	0,000	0,008
Sum					14,37				75,49	0,00	12,52
Centre of gravity	LCG	TCG	VCG								
<u> </u>	5,95	0,00	0,99								
Stability requirements		GM > 0									
KMt from Hydrostatics		1,165	m								
GM loaded		0,18	m								
Demand for 0-trim		LCG = LCB									
LCB from hydrostatics		5,933			-					_	
Difference LCG-LCB		-0,02	POS = forward trim	4							
0-Yaw requirement		TCG = 0									
TCG =	0,00	m	babord								

Full weight


Components				Volume [m^3]		Placement			Trimming moment		
	Quantity	Density [tonn/m^3]				LCG [m]	TCG [m]	VCG [m]	LCG * W [tonnm]	TCG * W [tonnm]	VCG * W [tonnm]
Main Hull	1				5.111	6.123	0	0.928	31.295	0.000	4,743
Hull Superstructure	1				0,7	5,055	0	2,385	3,539	0,000	1,670
Superstructure tower	1				0,2	8,485	0	3,295	1,697	0,000	0,659
					0.45	2.616		0.000	0.617	0.000	0.054
Electrical engines	2				0,15	3,646	0	0,339	0,547	0,000	0,051
Generator	1				0,65	8,778	0	0,803	5,706	0,000	0,522
Battery	1				1,5	9,032	0	0,238	13,548	0,000	0,357
Shaft	2				0,2	1,651	0	0,333	0,660	0,000	0,133
Propeller Nozzles	2				0,2	-0,055	0	0,324	-0,022	0,000	0,130
Counter weight	1				0,5	11,873	0	0,342	5,937	0,000	0,171
TRAPS Slepesonar	1				1,50	0,051	0	2	0,077	0,000	3,000
Sonar Buoys	10				0,17	5	0	1,6	0,850	0,000	0,272
Lightweight					10.881						
Design margin	1	0 % addition	design margin		11.97				- 21 - 27	1	
Building margin			uilding margin		12,57				- 24 	1	
	2	% addition b	unding margin	1							
Corrected Lightweight					12,57						
Aft Fueltank	1	0,855	0,95	0,795	0,65	1,909	0	0,404	1,233	0,000	0,261
Fore Fueltank	1	0,855	0,95	0,856	0,70	10,281	0	0,745	7,148	0,000	0,518
Middel Fueltank	1	0,855	0,95	2,756	2,24	6,577	0	0,367	14,723	0,000	0,822
Service Oil	1	0,843	0,95	0,035	0,03	7,8	0	0,55	0,219	0,000	0,015
Full weight					16.18						
Future growth margin	-	5% future or	owth margin		16,98						
Corrected Full Weight		5 /oracare gr	owninaight		16,98						
Sum					16,98			-	87,15	0,00	13,32
Centre of gravity	LCG	TCG	VCG								
	6,02	0,00	0,92		1						
Stability requirements		GM > 0									
KMt from Hydrostatics		1,161	m								
GM loaded		0,24	m								
Demand for 0-trim		LCG = LCB									
LCB from hydrostatics		5,898	m	-	1				1		
		2,070	POS =								
Difference LCG-LCB		-0,12	forward trim								
0-Yaw requirement		TCG = 0							1		
· run requirement		100 0	POS =	-						-	
TCG =	0.00	m	babord								

Cross curves and stability

In order to calculate stability and the vessels righting arm crosscurved are used to get information of KN $SIN(\emptyset)$ in regard to vessel displacement and healingangle. These values are then used to calculate GZ-arm for each case and plotted in a graph.

	Full weight	GZ	Standard	GZ	Lightweight
0,000	0	0,000	0	0,000	0
0,410	20	0,410	20	0,420	20
0,830	40	0,820	40	0,800	40
1,180	60	1,160	60	1,150	60
1,420	80	1,410	80	1,400	80
1,465	100	1,470	100	1,470	100
1,320	120	1,345	120	1,350	120
1,000	140	1,000	140	1,000	140
0,530	160	0,530	160	0,530	160
0,000	180	0,000	180	0,000	180

Appendix F - Parametric study

The following parametric study shall seek to identify the possible parameters in the design spiral in order to further optimize the vessel. Due to scope and time, certain limitations have been made, and will be addressed as "Not applicable", see list of limitations.

Parameter	Description	Adjustment
Complement	Not applicable, unmanned vessel.	Not applicable, unmanned vessel.
Mass	A lot of space available and buffer with respect to draft may allow for more weight. Possibility to adjust the hull thickness in order to reduce weight.	Smeared hull thickness adjusted from 0,04m to 0,035m.
Enclosed volume	A lot of space available, may allow for more fuel storage or other components.	No additional fuel storage or components added.
	Increased space may allow the vessel to become a test subject for other fuel types.	Testing of other fuel types in this phase will not be conducted.
Linear dimensions	Length of the vessel may be increased by changing shape of bow to go straight down to the bulb.	Beam adjusted from 2,8m to 2,667m Lpp adjusted from 10,8m to 12m.
Length/beam	L/B ratio to be adjusted for better stability properties.	Adjustments in linear dimensions. L/B ratio adjusted from 4,125 to 4,813 as product of change in linear dimensions.
Draught	Adjusted based on linear dimensions.	Adjusted from 0,96m to 1,077m.

Volume of	Not applicable	Not applicable
displacement Underwater form	Not applicable	Not applicable
Speed, power	Operating speed of tow may be subject of change in order to save fuel.	Operating speed not adjusted.
Propulsion machinery	Consider further optimizing the choice of engine based on propeller performance curve.	Synergy of propeller and engine will not be addressed at this stage, is currently sufficient for an initial design.
Propulsor	Hull limits propeller diameter to 0,5m without nozzle, and 0,625 with nozzle	Adjust the maximum allowed propeller diameter to 0,5m.
	Optimize maximum load of propeller	Max load adjusted from 10 to 6 kN/m ² .
LCG, LCB, Balance	Maximum allowed trim of +/- 5°	Within limit, will not be addressed.
Transverse stability	Option to address sections in the fuel tanks in order to limit free-surface-effect.	Sections in the fuel tanks will be addressed.
Safety, survivability (Redundans)	Consider the application of two generators Consider the application of a split Bus Bar for redundancy	Not changed.
Architecture layout	The lower deck on the aft may be extended in order to prevent instability. In general rounder edges will allow for better waterflow over deck.	Changed the overall layout of the superstructure to account for better waterflow over deck and stability.

Seakeeping	Sufficient, will not be directly addressed.	Sufficient, will not be directly addressed.
Manoeuvring	Not applicable, see limitations.	Not applicable, see limitations.
Structural strength	Not applicable, see limitations.	Not applicable, see limitations.
Ease of production	Adjusting drivetrain complexity may allow for easier production. Adjust the chosen battery packages in order to avoid a development phase.	Change to 6 x Transfluid 48V, 41kWh batteries. (Transfluid, 2020).
Cost	Not applicable in this phase	Not applicable on this phase.
Signatures	Consider the application of 4-bladed 0,55 BAR ducted propeller in order to reduce noise.	Not changed.
Electrical, heating loading	Not applicable	Not changed
Reliability, maintainability, availability, logistics	Possible to adjust drivetrain complexity in order to ease maintenance and reliability. Alternative battery package in order to avoid a development phase with Tesla 4680 battery cells (Kane, 2022). Possibility to add 1 more generator in order	Drivetrain not changed. Change to 6 x Transfluid 48V, 41kWh batteries. (Transfluid, 2020). No additional generators will be added.
	to increase redundancy.	
Payload or cargo characteristics	Option to adjust the amount of fuel represented in the vessel.	Adjust fuel to 4100 litres of fuel.

4615 Litres of fuel does satisfy the operational requirement of 1400 Nm operations in a 5-knot towing condition with 35% limit	Adjust to 4350 litres of storage, which equals to 4,35m ³ .
4615 litres of fuel do satisfy the operational requirement of 20 days of operation in a 5-knot towing condition with 35% limit.	

 Table 7: Parametric study with description and adjustments made.

Appendix G - Energy consumption and operational profile

The following tables are extracts from the energy consumption and operational profile calculations in a separate spreadsheet. The tables are separated into a preliminary design and an optimized design.

Preliminary design

Ve	ssel			
Knots	3	5	7	
Drag	0,13	0,34	1,27	kN
Speed	5,56	9,26	12,96	km/h
Speed	1,54	2,57	3,60	m/s
Pe = Effect towards water	0,20	0,87	4,57	kW
Resistance from towing cable	1,54	2,57	3,60	kW
Prop. Efficiency	0,388	1,675	8,754	kW
Prop Efficiency with tow	3,34	6,603	15,65	kW

20 % addition	0,5	2,0	10,5	kW
20 % Tow	4,014	7,924	18,78289885	kW

Estimated power need						
Hotel	10	kWh				
Passive sonar	(2-4)	kWh				
Passive sonar	2	kWh				
Winch	7	kWh				
Towing cable	1,0	kN				

Fuel total	4400	liter
------------	------	-------

Effect [kW]	0-5	25	50	75	100	%
Fuel [l/h]	1	2,25	3,5	4,75	6	

Scenario	Total Load	Generator load	Fuel [l/h]	Hours of operation	Nm	Days
Transitt 3 kn	6,44	0,29	2,43	1809,76	5429,29	75,4
Transitt 7 kn	12,01	0,53	3,67	1199,24	8394,67	50,0
Passiv son, 5 kn	19,92	0,89	5,43	810,69	4053,45	33,8
Winching in, 3						
kn	20,99	0,93	5,66	776,82	2330,46	32,4

35 % remaining fuel						
Hours. Of ops	nm	days				
1176,35	3529,04	49,01				
779,51	5456,54	32,48				
526,95	2634,74	21,96				
504,93	1514,80	21,04				

Operational					
profile	Speed [kn]	Distance [Nm]	Hours [h]	Fuel [l/h]	Fuel [l]
Transit	7	350	50,00	3,67	183,45
Transit	3	10	3,33	2,44	8,12
Winching	3	1	0,33	5,67	1,89
Towing	5	1000	200,00	5,43	1085,49
Winching	3	1	0,33	5,67	1,89
Transit	3	10	3,33	2,44	8,12
Transit	7	350	50,00	3,67	183,45
Total		1722	307,33		1472,42

Battery

Battery capasity	170	Wh/kg
Battery in		
weight	1470	kg
Total capasity	250	kWh

Scenario	kWh	El. [kWh]	Energy	Total	Battery [h]	Length [Nm]
Passiv son, 0 kn	0,00		8	8,00	31,3	0,0
Transitt 3 kn	0,47		6	6,47	38,7	116,0
Transitt 7 kn	2,0		10	12,01	20,8	145,7
Passiv son, 5 kn	7,9		12	19,92	12,5	87,8
Winching in, 3						
kn	4,01		17	21,01	-	-

Optimized design

	Vessel							
Knots	3	5	7					
Drag	0,13	0,34	0,64	kN				
Speed	5,56	9,26	12,96	km/h				
Speed	1,54	2,57	3,60	m/s				
Pe = Effect towards water	0,21	0,88	2,30	kW				
Resistance from towing cable	1,54	2,57	3,60	kW				
Prop. Efficiency	0,381	1,623	4,268	kW				
Prop Efficiency with tow	3,24	6,386	10,94	kW				

20 % addition	0,5	1,9	5,1	kW
20 % Tow	3,887	7,664	13,12404938	kW

Estimated powerneed					
Hotel	10	kWh			
Passive sonar	(2-4)	kWh			
Passive sonar	2	kWh			
Winch	7	kWh			
Towing cable	1,0	kN			

Fuel total	4100	liter
------------	------	-------

Effect [kW]	0-5	25	50	75	100	%
22,5	1	2,25	3,5	4,75	6	

Scenario	Total Load	Generator load	Fuel [l/h]	Hours of operation	Nm	Days
Transitt 3 kn	6,46	0,29	2,43	1683,83	5051,49	70,2
Transitt 7 kn	11,95	0,53	3,65	1121,75	7852,28	46,7
Passiv son, 5 kn	19,66	0,87	5,37	763,55	3817,74	31,8
Winching in, 3						
kn	20,89	0,93	5,64	726,76	2180,27	30,3

35 % remaining fuel									
Hours. Of ops	nm	days							
1094,49	3283,47	45,60							
729,14	5103,98	30,38							
496,31	2481,53	20,68							
472,39	1417,17	19,68							

Operation	Speed [kn]	Distance [Nm]	Hours [h]	Fuel [l/h]	Fuel [l]
Transit	7	350	50,00	3,65	182,75
Transit	3	10	3,33	2,43	8,12
Winching	3	1	0,33	5,64	1,88
Towing	5	1000	200,00	5,37	1073,93
Winching	3	1	0,33	5,64	1,88
Transit	3	10	3,33	2,43	8,12
Transit	7	350	50,00	3,65	182,75
Total		1722	307,33		1459,43

Fuel

Battery

Battery capasity	170	Wh/kg
Battery in weight	1470	kg
Total capasity	250	kWh

Scenario	kWh	El. [kWh]	Energy	Total [kWh]	Battery [h]	Length [Nm]
Passiv son, 0 kn	0,00		8	8,00	31,3	0,0
Transitt 3 kn	0,46		6	6,46	38,7	116,1
Transitt 7 kn	1,9		10	11,95	20,9	146,5
Passiv son, 5 kn	7,7		12	19,66	12,7	89,0
Winching in, 3						
kn	3,89		17	20,89	-	-

Appendix H - Optimization of propeller

This appendix will represent the extracts from the spreadsheet used in the estimation of optimal propeller diameter, rpm, effect, and torque. The appendix will be split into a preliminary design, and an optimized design based on the parametric study in appendix F.

Preliminary Design

Towing 5 knots FPP		Comments
BAR	0,65	From propeller series
Lwi	11,553	From hydrostatic data
Т	0,960 m	From hydrostatic data
Bwl	2,818	From hydrostatic data
B/L	0,244	4,099716111
Rts	1,34 kN	From Appendix G
Blades	3	From propeller series
Propeller shaft	2	Estimation
Max load		160780 (max)
ρ	1025 kg/m^:	standard
Co	0.5288	From hydrostatic data
Vs	5 knop	From hydrostatic data
	2,57 m/s	From hydrostatic data
W	0,0790	Wake fraction coefficient
t	0,1153	Thrust deduction coefficient
J	0,6	Advance Coefficient
PID	1,2	Pitch/Diameter ratio
٦٥	0,60	Propeller efficiency
ΠB	0,995	Relative Rotational efficiency
Πm	0,91	Mechanical Efficiency

Calculations

Taksel	= Rtsf[(1-t)*antall antall aksler	0,757 KNIscrew
AE	= Taksel/Tmax	0,076 m ² /screw
D	= √[(4*AE)/(π*B.A.R)]	0,385 m
V.	= Vs*(1-w)	2,369 m/s
Ktijin2	= (T*J^2/(p*D^2*V*^2)	0,887
w	= 2*Сь^5*(1-Сь)+0,04	0,079 Wake Fraction
t	= 0,7*w + 0,06	0,115 Thrust deduction
n	= VA(J*D) [615 rpm
P.C	= qo * ((1-t)/(1-w)) * qв * qm	0,522 Propeller Coefficient
PE	= Βτs*Vs	3,447 KW
Pe	= PdP.C	6,605 KW
Q	= (P₀*1000*60)/(2*π*n)	102,54 Nm
P₀ + 20% servi	i = PdP.C	7,926 kw
Q + 20% service	c = (P₀*1000*60)/(2*π*n)	123,05 Nm
89	1.5 2.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1	61,52 Nm/screw
		3,96 kWłscrew

Figure 10 : Extract from the initial propulsion spreadsheet.

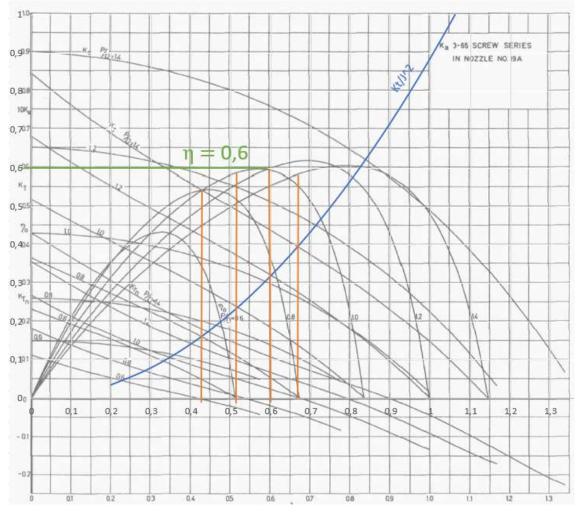


Figure 11 : Values of Kt plotted in Wageningen Ka 3-65 propeller series data.

J	0	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1	1,1	1,2	1,3	1,4	1,5
Кт		0,035	0,080	0,142	0,222	0,319	0,435	0,568	0,719	0,887	1,074	1,278	1,500	1,739	1,997

 Table 8 : Relation between Kt and J for the initial parameters.

Optimized Design

Towing 5 knots FPP		Comments
BAR	0,65	From propeller series
Lwi	12,837	From hydrostatic data
Т	1,077 m	From hydrostatic data
В	2,667	From hydrostatic data
BIL	0,207758822	4,813273341
Rts	1,3407 kN	From Appendix G
Blades	3	From propeller series
Propeller shaft:	2	Estimation
Max load	6 KN/m^2	60780 (max)
p	1025 kg/m^3	standard
C⊾ V₅ w	0,5288 5 knop 2,57 m/s 0,0790 0,1153	From hydrostatic data From hydrostatic data From hydrostatic data Wake fraction coefficient Thrust deduction coefficient
J	0,700	Advance Coefficient
PYD	1,20	Pitch/Diameter ratio
1 0	0,620	Propeller efficiency
ПВ	0,995	Relative Rotational efficiency
Πm	0,91	Mechanical Efficiency

Calculations

Taksel	= Rts/[(1-t)*antall antall aksler]	0,758 KNIscrew
AE	= Taksel/Tmax	0,126 m ² /screw
D	= √[(4*AE)/(π*B.A.R)] [0,497 m
V.	= Vs*(1-w)	2,369 m/s
Kt/J^2	= (T*J^2/(p*D^2*V_^2)	0,532
w	= 2*Сь^5*(1-Сь)+0,04	0,079 Wake Fraction
t	= 0,7*w + 0,06	0,115 Thrust deduction
n	= VA(J*D)	408 rpm
P.C	= до * ((1-t)/(1-w)) * дв * де	0,539 Propeller Coefficient
PE	= Bπs*Vs	3,449 KW
P۹	= PdP.C	6,395 KW
Q	= (P₀*1000*60)/(2*π*n)	149,57 Nm
Pe + 20% serv	vic = PeP.C	7,674 kw
Q + 20% serv	ic = (P₀*1000*60)/(2*π*n)	179,49 Nm
		89,74 Nm/screw
		3,84 kW/screw

Figure 12: Extract from the optimized propulsion spreadsheet.

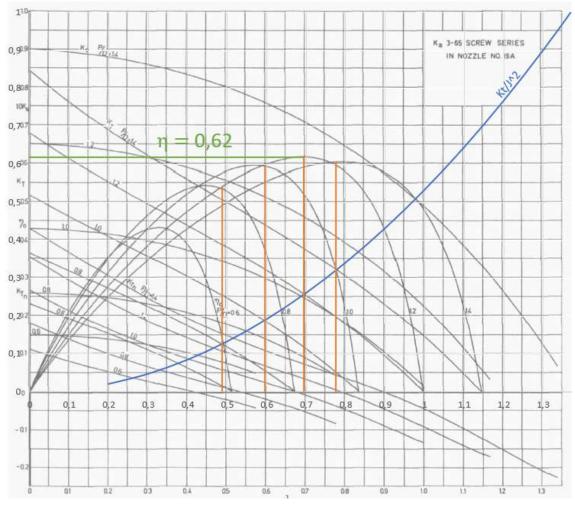


Figure 13: Values of Kt plotted in Wageningen Ka 3-65 propeller series data.

J	0	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1	1,1	1,2	1,3	1,4	1,5
Кт		0,021	0,048	0,085	0,133	0,192	0,261	0,341	0,431	0,532	0,644	0,767	0,900	1,044	1,198

Table 9: Relation between Kt and J for the optimized parameters

References

Bellmarine. Drivemaster. Drivemaster. Retrieved from <u>https://www.bellmarine.tech/pdf/?path=/var/www/vhosts/bellmarine.tech/httpdocs/wp-content/uploads/2022/01/BELLMARINE_GB_Jan-</u> <u>2022_LQ.pdf&filename=BELLMARINE_GB_Jan%202022_LQ&productname=drivemaster&pag</u> <u>=6-7</u>

- BunkerOil. (2021). Marine Gas Oil (MGO). Retrieved from https://www.bunkeroil.no/no/kategori/mgo
- Kane, M. (2022). Tesla's 4680-Type Battery Cell Teardown: Specs Revealed. Retrieved from <u>https://insideevs.com/news/598656/tesla-4680-battery-cell-specs/</u>
- Lubricants, N. ARCTIC SYNTHETIC HEAVY DUTY ENGINE OIL. Retrieved from http://oilmart.com/data/products/pds/1723/TDS%2049N%20Arctic%20Synthetic%200W-<u>30.pdf</u>
- Mariner X. (2022). Retrieved from <u>https://www.maritimerobotics.com/_files/ugd/a0d8a5_3998cfeab939480a814bbf1ae778b2</u> <u>9f.pdf</u>
- Protector USV (2013). Retrieved from <u>https://www.naval-technology.com/projects/protector-unmanned-surface-vehicle/</u>
- Saildrone Explorer USV. (2022). Naval technology. Retrieved from <u>https://www.naval-</u> technology.com/projects/saildrone-explorer-unmanned-surface-vessel-usv-usa/
- Scott, R. (2020). GeoSpectrum Launches Scaled down TRAPS sonar for USVs. Retrieved from <u>https://www.janes.com/defence-news/news-detail/geospectrum-launches-scaled-down-traps-sonar-for-usvs</u>
- Skopljak, N. (2022). SEA-KIT eyes zero-emission vessels with latest USV design. Retrieved from https://www.offshore-energy.biz/sea-kit-eyes-zero-emission-vessels-with-latest-usv-design/
- Transfluid. (2020). Battery Pack- innovative energy system for marine application. Retrieved from https://www.transfluid.eu/wp-content/uploads/2021/01/batterie-tf_gb_20.10_lq_rev2.pdf

Waveglider. (2022). Retrieved from https://www.liquid-robotics.com/wave-glider/how-it-works/

WhisperPower. Specifications M-SQ Pro 25. *M-SQ*. Retrieved from <u>https://www.whisperpower.com/diesel-generators/m-sq-generators/m-sq-pro-25</u>