
Mobile Network Applications manuscript No.
(will be inserted by the editor)

Disk Cluster Allocation Behavior in Windows and NTFS

Martin Karresand · Stefan Axelsson · Geir Olav Dyrkolbotn

Received: date / Accepted: date

Abstract The allocation algorithm of a file system has a
huge impact on almost all aspects of digital forensics, be-
cause it determines where data is placed on storage media.
Yet there is only basic information available on the alloca-
tion algorithm of the currently most widely spread file sys-
tem; NTFS. We have therefore studied the NTFS allocation
algorithm and its behavior empirically. To do that we used
two virtual machines running Windows 7 and 10 on NTFS
formatted fixed size virtual hard disks, the first being 64 GiB
and the latter 1 TiB in size. Files of different sizes were writ-
ten to disk using two writing strategies and the $Bitmap files
were manipulated to emulate file system fragmentation.

Our results show that files written as one large block are
allocated areas of decreasing size when the files are frag-
mented. The decrease in size is seen not only within files,
but also between them. Hence a file having smaller frag-
ments than another file is written after the file having larger
fragments. We also found that a file written as a stream gets
the opposite allocation behavior, i. e. its fragments are in-
creasing in size as the file is written. The first allocated unit
of a stream written file is always very small and hence easy
to identify.

The research leading to these results has received funding from the Re-
search Council of Norway programme IKTPLUSS, under the research
and development project Ars Forensica grant agreement 248094/O70.

M. Karresand · Stefan Axelsson · Geir Olav Dyrkolbotn
Department of Information Security and Communication Technology,
Norwegian University of Science and Technology, Gjovik, Norway

M. Karresand
Division of Command, Control, Communications, Computers, Intelli-
gence, Surveillance and Reconnaissance, Swedish Defence Research
Agency, Linkoping, Sweden
E-mail: martin@filecarving.net

S. Axelsson
School of Information Technology, Halmstad University, Halmstad,
Sweden

The results of the experiment are of importance to the
digital forensics field and will help improve the efficiency
of for example file carving and timestamp verification.

Keywords Digital forensics · file carving · allocation
algorithm · NTFS.

1 Introduction

File carving [17,18] and timestamps are two key concepts
in digital forensics. Unfortunately both concepts are laden
with complex operations and a large amount of uncertainty
regarding the correctness of the results. In file carving the
digital forensic investigator has to find and categorize a large
amount of (fragmented) data and then put the fragments
back into the original file again without the help of a file
system. The same applies to timestamps, where a timeline
must be constructed, often only with data from different log
files and the file system meta data at hand, two sources that
are easy to manipulate. In both cases a digital forensic in-
vestigator would be helped by the extra information hidden
in the storage structure of data, its allocation layout.

The file carving process and the extraction of timestamps
are both dependent on the behavior of the combination of file
system and operating system (OS), which govern the place-
ment of data on hard disks through an allocation algorithm.
Knowledge of the layout pattern of data on disk is crucial to
the forensic investigator when doing file carving. However,
the actual behavior of the allocation algorithm is not known.
For example the general assumption used as a basis for dif-
ferent forensic file carving tools is that the data to be carved
is stored contiguously and is only mildly fragmented.

To improve the timestamp information used in investiga-
tions several propositions have been made to also use the be-
havior of the allocation algorithm as a source [25,26]. How-
ever, we have not found any previous work that study the ex-

2 Martin Karresand et al.

act behavior of the allocation algorithm of for example New
Technology File System (NTFS). There is a small number
of main allocation algorithm concepts used in all modern
OSs, but the exact behavior of the different implementations
of the algorithms are not known, at least not for the closed
source OS variants. Windows using NTFS is for example
said to use a best fit allocation strategy, but that information
is getting dated and is also based on the Linux implementa-
tion of the NTFS driver [1]. We therefore have studied the
allocation behavior of two modern versions of Windows (7
and 10) in combination with NTFS to empirically reverse
engineer the allocation algorithm(s) used. The data source
is based on writing files of different sizes to disk using dif-
ferent writing strategies (writing the file as one large block
at once or as a continuous stream of data). The experiment
was done using two virtual machines having fixed size vir-
tual hard disks of different sizes, one 64 GiB and one 1 TiB.

The experiment is part of the future work presented in
two earlier articles [5,11] where we develop a framework to
create maps of user data placement on hard disks. The maps
give the probability of finding unique user data at differ-
ent Logical Block Addressing (LBA) positions in Windows
NTFS partitions and can for example be used for triage,
planning of hard disk investigations and to enable different
areas to be prioritized in file carving processes. Knowledge
of the actual behavior of the allocation algorithm of different
file systems will enhance the precision of the maps.

Our work is based on an empirical evaluation of the be-
havior of the allocation algorithm of Windows NTFS, us-
ing the hypothesis that a best fit allocation strategy is used.
Hence we do not reverse engineer any code or expose any
secret information. Likewise the reported results are not de-
tailed enough to enable someone to recreate the Microsoft
Windows NTFS allocation algorithm or driver. However, the
presented results are of great value to the digital forensics
community and we therefore make them public as a help in
the global fight against digital crime.

The rest of this paper is organized as follows: The re-
maining parts of Section 1 presents background on file allo-
cation algorithms and related work. In Section 2 we describe
how the experiment was implemented. Section 3 presents
the results of the experiment and in Section 4 we discuss the
effects and implications of our result to the research field
of file carving and other relevant areas within and related to
digital forensics. Section 5 concludes the work and presents
ideas of future work to be done.

1.1 Background

The theory of file system construction is for example de-
scribed by Silberschatz et. al [20], Stallings [21] and Tanen-
baum and Bos [23]. A file system keeps track of data stored
on secondary storage and is organized in different ways.

However, all implementations share some common proper-
ties: the addressing of the physical storage is abstracted by
the file system into logical addresses and the logical stor-
age position of written data is determined by an allocation
algorithm.

During the history of computer systems different meth-
ods of allocating disk space have been in use. The main
methods are contiguous, linked and indexed allocation [20,
21,23]. The indexed allocation strategy, where the addresses
of the data blocks are held in an index separated from a file’s
data, is currently the most popular. The indexed allocation
strategy does not suffer from external fragmentation (unal-
located holes being to small to be filled with new data), but
heavily used storage media can still lead to fragmentation
of files and require regular defragmentation. There is also
a risk of disk space being wasted when using indexed allo-
cation, especially for small files requiring a full index meta
data block to hold just a few index posts.

There are also a number of algorithms used for handling
the free space that is to be populated by new files. Silber-
schatz et. al [20] presents three algorithms; first fit, best fit
and worst fit, Stallings [21] mentions nearest fit and Tanen-
baum and Bos [23] add next fit and quick fit. Together they
give the following free space allocation algorithms:

First fit starts the search for free space at the beginning of
the file system and has the requirement of the space be-
ing large enough to hold the entire file. If there is no
space large enough to hold the entire file, a fragment is
written at the found position and the search continues.

Next fit (Stallings [21, p. 544] calls this nearest fit) uses the
same principle as first fit of allocating the next free space
being large enough to hold the entire file, but the search
is done from the current position in the file system. If
there is no single free space to hold the entire file the file
is fragmented and the available free spaces are used to
hold the file.

Best fit uses the free space best fitting the new file, i. e. giv-
ing the smallest remaining free space. This requires all
the available free spaces to be scanned before the best fit
can be chosen.

Worst fit uses the free space having the worst fit to the new
file. This is the opposite to best fit, i. e. giving the largest
remaining free space. As for the best fit algorithm the
available free spaces of the entire file system have to be
scanned before the worst fit can be chosen.

Quick fit uses several lists of different sizes of free block ar-
eas. In this way a fitting area can be found very quickly,
but the algorithm suffers from a complex process dur-
ing deallocation when freed up areas might have to be
merged. If this is not done the storage will soon frag-
ment into a large amount of free areas too small to be
usable.

Mobile Networks and Applications 3

These free space allocation algorithms are not specific to
storage of data on disk, they are also used in for exam-
ple memory allocation in Random Access Memory (RAM)
[20].

Based on the information given by [3] and [15] Microsoft
Windows’ NTFS is using an index allocation strategy. The
problem of space being wasted when using index allocation
is solved in NTFS by storing the data of smaller files (up to
approximately 700 bytes1) in the Master File Table (MFT)
meta data records themselves [15].

According to Carrier [1] the best fit free space algorithm
is used by Windows XP on NTFS formatted hard disks.
Since the book was written in 2005 it does not cover the
allocation algorithms used by Windows 7 and newer. Our
previous experiments [5,11] indicate that the actual behav-
ior of the allocation algorithm in NTFS is not strictly best
fit. The results from experiments indicate that groups of free
clusters are allocated in descending order of size, which is
best fit, but not always. The deviating behavior is mentioned
in a Superuser Q&A [22].

When formatting an NTFS partition 12.5% of the space
is by default reserved for the MFT [15]. The MFT records
are 1 KiB in size and usually the size of the smallest allocat-
able unit (called cluster) in NTFS is 4 KiB [15]. The alloca-
tion status of every cluster in the file system is stored in the
$Bitmap file, which is record number 6 in the MFT. Each bit
in the $Bitmap file represents one file system cluster in as-
cending LBA order. If a cluster is allocated the correspond-
ing bit in the $Bitmap file is set to 1, hence 0 represents an
unallocated cluster.

Files can be written to disk in two ways; either as a
stream, or the entire file as a block. In the first case the OS
does not know the final size of the file and therefore cannot
optimize the allocation accordingly. This often leads to file
fragmentation, but the behavior is partly mitigated by the in-
ternal buffering of the OS. When the entire file is written in
one piece the OS knows its size in advance and can utilize
the standard allocation algorithm, which optimizes the stor-
age. This behavior is probably more common when dealing
with smaller files that easily can be held in RAM, than for
large files. The specific write behavior is software dependent
and might incorporate temporary writing of files to protect
the data in case of a power loss or hardware failure.

1.2 Related work

We have not found any related work directly addressing the
detailed behavior of the allocation algorithm in Microsoft
Windows 7 and 10 running in NTFS formatted partitions.

1 The maximum size of an internal $Data attribute varies depending
on the size of other attributes stored in the MFT record. Most sources
give a maximum internal $Data attribute size of 600 to 700 bytes. Mi-
crosoft reports a 900 byte limit [15].

There are however some work done on the connection be-
tween timestamps, cluster allocation and file creation order.

Willassen studies the formal foundation of timestamps
in his PhD thesis [26]. There he also formulates the crite-
ria needed to use the allocation strategy of a file system for
checking timestamps. He also briefly discusses the alloca-
tion strategy of NTFS and states that it is best fit in Win-
dows XP and that a first fit allocation strategy is used within
the MFT. The PhD thesis is partially based on an earlier ar-
ticle by Willassen [25] describing a method to use a first fit
allocation strategy to detect antedating of files.

Tse [24] intends to use the allocation pattern of files to
estimate the causal ordering of events, but concludes that
using the actual allocation patter is complex. Tse instead de-
fines two metrics approximating the allocation pattern causal-
ity and then tests the metrics against standard timestamps.

Minnaard [16] studies the inner workings of the Linux
implementation of the File Allocation Table (FAT32) file
system in an article from 2014 by looking at the source code
and then uses the result to find the causal order of files from
a TomTom Go. The article mentions that the Windows 7 im-
plementation of FAT32 is more complex than the Linux vari-
ant.

2 Experimental setup

The experiment is designed to test whether Windows in com-
bination with NTFS is using the best fit allocation strategy
as indicated in the literature [1,26]. To enable this the behav-
ior of the allocation algorithm has to be studied in different
situations regarding disk utilization, file system fragmenta-
tion, file size and partition size. We therefore manipulated
the $Bitmap file of the file systems of the virtual machines
used to emulate different states of file system fragmentation.

2.1 Virtual hardware

The experiments were performed on two virtual machines
using VirtualBox running Windows 7 and Windows 10. The
Windows 7 machine had a fixed size 64 GiB hard disk and
the Windows 10 machine a 1 TiB ditto to cover both older
and newer Windows OSs, as well as small and large hard
disks. Each virtual machine was given a folder shared with
the host. To enable us to use standard digital forensic tools
(the Sleuth Kit [2]) on the virtual hard disks and their parti-
tions they were loop mounted with read/write access rights.

The disk of the Windows 7 machine was already used
since it was taken from one of our earlier experiments [5],
where 10000 file operations were performed in a pseudo-
random pattern with bias towards file writing. This had given
a heavily fragmented file system corresponding to an old and
well used (home) computer. The fragmentation status of the

4 Martin Karresand et al.

file system was checked before the start of the experiment
and one remaining large area of free clusters was found at
the end of the partition. To even out the fragmentation pat-
tern we decided to split that area into five smaller areas of
approximately 262000 clusters each, corresponding to ap-
proximately 1 GiB per area.

The Windows 10 machine was freshly installed and the
file system therefore only contained files from the installa-
tion, without any significant fragmentation. It represented an
office computer using mainly network based storage, with-
out synchronization between local and network storage.

2.2 Process description

During the experiment each virtual machine was repeatedly
power cycled to ensure that all file operations were flushed
to hard disk (both the virtual and the real on the host). The
experiment started by copying the $Bitmap file of the pow-
ered down virtual machine to the host. Then the following
steps were iterated over for each file write operation:

1. The virtual machine was powered on
2. A file signaling the power on sequence had finished was

written to the shared folder
3. The file write operation was executed
4. A file signaling the file operation had finished was writ-

ten to the shared folder
5. The virtual machine was powered down
6. The power down status was checked using vboxmanage

7. The allocation information of the newly written file was
extracted using the istat [2] tool

8. The $Bitmap file of the virtual machine was copied to
the host using icat [2] tool

To allow the virtual machine, as well as the host, to properly
write all files to disk up to 10 second long delays were in-
troduced between the steps 1 to 3 of each iteration. We also
used files written to a shared folder to signal when a step
was finished.

To cover for both writing a file as one block and writing
it as a stream a Python 2.7 script was used to either write
a file to an array in RAM and then to disk (block writing)
or using Python’s own file write operation directly writing
one 512 B sector at a time (stream writing). Both types of
write operations were buffered by the OS, but in the block
writing case the OS got information on the file size before
the file was written to disk, which it did not when the file was
written as a stream. Each 512 byte block of the files were
uniquely marked with a consecutive number together with a
file identifier. The marking was used as a backup procedure
in case we had to read the raw data from the virtual hard
disks due to errors in the process. The marking was also used
to verify that the istat tool reported the allocation pattern

Table 1 The unallocated areas in the original 5.3 GiB space after the
BM 7:1 manipulation.

Start position Size [cluster]

15372418 262000
15634546 262143
15896818 262144
16159090 262145
16421363 262160

in the same order as the clusters were written to, which it
did.

We used files of different sizes to determine if the allo-
cation algorithm behaved differently depending on the size
of the written file. In the first round of the experiment we
used 4, 128, 511, 512, 513 and 1024 MiB files. The 511
and 513 MiB files originated from the first version of the
Python script, where the type of writing was depending on
the size of the file. If the file size was ≤ 512 MiB the file was
written as one block and if it was larger it was written as a
stream. The range of file sizes were later expanded to also
include 12, 96, 384, 768 and 1536 MiB files to get a more
even coverage of small and large files and the Python script
was updated to enable different writing strategies regardless
of file size.

2.3 Bitmap manipulation

To cover for possibly different allocation behavior depend-
ing on the available amount of storage of the file system we
manipulated the $Bitmap file of the Windows NTFS virtual
hard disks. The $Bitmap file of the Windows 7 machine was
manipulated once and the Windows 10 $Bitmap file three
times.

The Windows 7 virtual machine’s main partition was
heavily fragmented from the beginning, but still contained
a contiguous area of approximately 5.3 GiB. This area was
divided into five smaller areas, which can be seen in Table 1,
all other free areas where kept in their original state. The
modified layout is called BM 7:1 throughout the text. The
unmodified layout was never used due to its already heavily
fragmented file system.

Directly after installation of the Windows 10 virtual ma-
chine its 1 TiB main partition contained two large unallo-
cated areas of approximately 497 and 511 GiB respectively
at the end of the partition. This original, unmodified, layout
is called BM 10:0 throughout the text.

After the BM 10:0 file writing operations were executed
we manipulated the $Bitmap file to fragment the allocation
layout. The smaller of the two large free areas was divided
into 501 equally sized unallocated areas of 120000 clusters
(468.75 MiB) each and the larger unallocated area was di-
vided into 1026 unallocated areas of increasing size, from

Mobile Networks and Applications 5

Table 2 The modified areas of BM 10:2.

Spaces Function Tot. [cluster]

511 int(120000/x+27;x = [512 : −1 : 2]) 711541
23 120000 2760000

512 7x+13;x = [0 : 511] 922368
16 7999 127984

1 17 17
29 int(1800000/x+17;x = [1 : 29]) 7131462

120 clusters (480 KiB) to 123120 clusters (approximately
481 MiB) in steps of 120. The two areas together contained
123342120 (approximately 471 GiB) free clusters after the
modification. All other unallocated areas on the partition
were unmodified. We refer to this manipulation setting as
BM 10:1

After testing the BM 10:1 allocation manipulation we
created a new bitmap (referred to as BM 10:2) file for the
Windows 10 virtual hard disk where we decreased the avail-
able space even more by first restoring the virtual machine
to its original state and then creating the free areas shown in
Table 2 from the two large unallocated spaces. The BM 10:2
manipulation was meant to test the block writing allocation
behavior by forcing the algorithm to chose between a few
very large areas and many small. The seemingly odd values
used in Table 2 were chosen to avoid creating free areas of
exact multiples of 2. The total amount of free space in the
manipulated area was 11715760 clusters (44.7 GiB) after the
modification.

However, the BM 10:2 $Bitmap manipulation was not
strict enough to generate any significant fragmentation dur-
ing the block writing. We therefore manually decreased any
remaining free areas larger than 120000 consecutive clus-
ters with a factor 10. This left a total of 3361315 clusters
(12.8 GiB) of free space in the manipulated area. This last
manipulation is referred to as BM 10:3.

3 Result

The overall result of the experiment shows that Windows 7
and 10 using NTFS formatted partitions are both using a best
fit allocation algorithm. This is however not always true, as
will be shown in the following sections. In the text we will
refer to lower rest of free clusters as a term for allocation
patterns where the pattern gives a lower number of remain-
ing free clusters compared to a strict best fit pattern. Please
observe that the term is only defining a local minimum, i. e.
we have only looked at one alternative pattern.

3.1 Block writing

The result of the block writing operations are found to be
following the best fit allocation strategy in most of the cases

F
ra

g
m

e
n

t
si

ze
 [

cl
u

st
e
r]

0

2×104

4×104

6×104

8×104

Fragment #
0 10 20 30 40 50 60 70

Fig. 1 The decrease in fragment size for the Windows 7 block writing
experiment using the BM 7:1 layout.

in Windows 10, but not for Windows 7. We also present an
interesting pattern common to both versions of Windows re-
garding the sizes of fragments.

3.1.1 Windows 7

The result of the block writing file operations on the 64 GiB
hard disk of the Windows 7 virtual machine using BM 7:1
can be seen in Figure 1. The file system was already partially
fragmented due to 10000 random file operations executed
in an earlier experiment and we fragmented the remaining
large free area into five smaller ones to put an even higher
burden on the allocation algorithm.

All but three block writing file operations result in be-
tween 2 and 9 fragments, which are all allocated in descend-
ing order of size within each file operation (apart for file
operations 5 to 7 (fragments 14 to 16 in Figure 1), which
are small and unfragmented). None of the fragmented file
operations are best fit allocations and neither are they opti-
mized from the point of lower rest of free clusters. The last
fragment in every file operation is smaller than the previous
fragments in the operation, which is represented by the dips
in the curve in Figure 1. What also can be noticed is the de-
creasing size of the fragments even between file operations,
where the size of the second last fragment in the previous
file operation is larger than the starting fragment size in the
following file operation. Also the free areas chosen by the
algorithm are often slightly larger (< 10 clusters) than the
fragment and therefore free space might be wasted.

The continuously decreasing fragment sizes seen in Fig-
ure 1 might seem to indicate a typical best fit behavior, but
there were larger free areas that would have been better to
use from a best fit point of view. Instead the algorithm seems
to balance the sizes of the fragments to be as similar as possi-

6 Martin Karresand et al.

Table 3 The 11 largest free areas in the original installation of Win-
dows 10 on a 1 TiB hard disk (BM 10:0).

Position [cluster] Free size [cluster]
150728 869
135305 1259

2009009 1679
2005999 3009
2010944 3742
2570502 4774

56466 14272
809984 27680

2775255 239688
3021071 131132401

134284544 134022399

Table 4 The 8 block write operations performed using the original
allocation layout BM 10:0. The operations are presented in order of
execution.

File op. Position [cluster] Size [cluster]
1 2775255 131072
2 3148190 131072
3 3280413 1024
4 3283997 1024
5 3282700 1024
6 3291406 262144
7 3815408 32768
8 3882725 32768

ble, apart from the last fragment. We did not see any pattern
regarding the position of the chosen fragments.

3.1.2 Windows 10

The original installation (BM 10:0) of Windows 10 on a
1 TiB virtual hard disk contains two large areas of free clus-
ters at the end separated by a 512 MiB large area holding
a number of files related to the System Volume Information
directory. The two areas are the largest free areas on disk
and over 500 times larger than the third largest area. The 11
largest free areas on the partition can be seen in Table 3.

All file operations using BM 10:0 allocated files of one
block each, which can be seen in Table 4. The first and
second write operations are best fit allocations, as can be
seen when comparing their sizes and positions to the avail-
able free areas in Table 3. The rest of the file write opera-
tions all allocate consecutive areas in the second largest free
area, which is not a strict best fit behavior. Even the three
4 MiB file write operations (operation 3 to 5 in Table 4) are
allocated in the same area and not in any of the better fit-
ting available areas. Although there are system related and
stream writing file operations executed between operations
3 to 5 there are several free areas that would fit the file sizes
of these operations better than the actual allocation do.

After the file write operations in BM 10:0 19 block write
operations are performed using the BM 10:1 allocation lay-
out. The larger write operations are split into n ≥ 2 frag-
ments, where the n−1 first fragments all have approximately

the same size within each operation. The largest available
free area is 123120 clusters in size and as can be seen in Ta-
ble 5 that area is the first to be allocated in this part of the
experiment.

All positions in Table 5 ending in “4544” are free areas
created by us. The larger areas belonging to the “4544” se-
ries are also allocated in descending order, hence they are
allocated in best fit order. Also the smaller, remaining parts,
of the file write operations belonging to the “4544” series are
allocated in best fit order, although some of them do not fully
occupy the original free area. The unfragmented file opera-
tion 6 is also a best fit allocation due to a number of previous
system file deallocations that left a free area of suitable size.

The part of the experiment using the BM 10:2 alloca-
tion layout results in single block allocations and all of them
are made in order of best fit. Thus even eight 768 MiB files
all result in single block allocations. Worth noticing is the
fact that all but one allocation are made within the modified
area, i. e. not in any of the original free areas. The best fit al-
location approach is proven by the fact that an area outside
of the modified area is used in a sequence of equally sized
files. That area has been available since the installation of
the OS and has a size that fits in between the sizes of the
modified free areas.

The execution of the file operations using the BM 10:3
allocation layout gives files fragmented into 3, 4 and 5 frag-
ments, as can be seen in Table 7. The allocation strategy
is no longer strictly best fit. Fragment 2 in file operation 1
is not best fit, because the free area at position 264466712
would have been better to use, as can be seen in Table 6
showing the 21 largest free areas available to file allocation
1. The second file allocation in Table 7 is strictly best fit,
fragments 0 to 2 belong to the largest available free areas in
that round and fragment 3 to the free area best fitting the re-
mainder. The last file allocation, number 3 in Table 7 is not
best fit at a first glance. There is a fragment of 56801 clusters
that would have been better to use. However that free area
would then have been combined with an area leaving 1589
free clusters. The current allocation only leaves 205 clusters
unallocated and therefore has a lower rest of free clusters
than a potential strict best fit allocation. If this is the actual
behavior of the allocation algorithm is however not possible
to deduce from only one file operation.

3.1.3 General observations

We have not been able to see any patterns in the allocation
algorithm’s behavior regarding how the allocated positions
are chosen. Likewise we have not been able to find an algo-
rithm for how the fragment sizes are chosen. In most cases
the fragments are somewhat smaller (a few clusters) than
the free area, leaving small free areas before and/or after the
fragment. Hence the the positioning and size of the frag-

Mobile Networks and Applications 7

Table 5 The 19 block write operations performed using the BM 10:1
allocation layout. The operations are presented in order of execution.

Op. Frag. Pos. [cluster] Size [cluster]
1 0 267534544 123120
1 1 142864544 7952
2 0 267404544 123000
2 1 142994544 8072
3 0 267274544 122880
3 1 267144544 122760
3 2 152094544 16504
4 0 267014544 122640
4 1 266884544 122520
4 2 152614544 16984
5 0 137534544 3072
6 0 3553550 3072
7 0 160804544 24576
8 0 137664544 3072
9 0 160934544 24576

10 0 161064544 24576
11 0 161194544 24576
12 0 240754544 98304
13 0 240884544 98304
14 0 241014544 98304
15 0 241144544 98304
16 0 266754544 122400
16 1 266624544 122280
16 2 266494544 122160
16 3 162754544 26376
17 0 266364544 122040
17 1 266234544 121920
17 2 266104544 121800
17 3 163924544 27456
18 0 265974544 121680
18 1 265844544 121560
18 2 265714544 121440
18 3 165094544 28536
19 0 265584544 121320
19 1 265454544 121200
19 2 265324544 121080
19 3 166264544 29616

ments within the free areas are probably governed by some
rules, but we have to few data to fully deduce them.

All fragmented block writing operations have one fea-
ture in common, which is the globally decreasing fragment
size. The second last fragment in a file operation is always
larger than the first fragment in the following file operation.
The decreasing size feature is also valid within each file op-
eration. The feature can be seen in Figure 1 for the Win-
dows 7 virtual machine and in Tables 4, 5 and 7 for the Win-
dows 10 virtual machine. This pattern is valid even if there
are system file or stream writing operations interleaved with
the block writing operations.

3.2 Stream writing

The result of the stream writing file operations consists of
15 operations done in Windows 7 and 23 operations in Win-
dows 10. Since the files are written as a stream the OS can-

Table 6 The 21 largest free areas in the (BM 10:3) allocation layout.
These are also all free areas equal to or bigger than 18017 clusters in
the partition.

Position [cluster] Free size [cluster]
265866802 18017
124324183 24027
265638022 28409
124564183 30027
124804183 40027
263669912 40407
264466712 56801
265380686 60550
267499096 62144
267646484 69247
267574290 72017
267338630 81835
267252722 85731
262618164 85961
267162528 90017
267067598 94753
266967404 100017
265080492 103409
266861328 105899
125536472 107711
266748634 112517

Table 7 The 3 block write operations performed using the BM 10:3
allocation layout. The operations are presented in order of execution.

Op. Frag. Pos. [cluster] Size [cluster]
1 0 266748636 112512
1 1 125536472 107708
1 2 265380688 41924
2 0 267252724 85728
2 1 267338632 81832
2 2 267574292 72012
2 3 124324184 22572
3 0 267646484 69244
3 1 267499096 62140
3 2 267438388 60531
3 3 263669912 40407
3 4 124564184 29822

not implement a proper best fit allocation strategy and we
therefore do not check for it.

3.2.1 Windows 7

There is a weak correlation between file size, the file writ-
ing order and number of fragments in the results, which can
be seen in Table 8. The correlation is however very weak
and seems to be increasing for small files and decreasing for
larger files.

The allocation patterns of the different file operations al-
ways begin with very small fragment sizes, often there is a
single cluster allocated first. The size of the fragments in-
creases as more data is written to disk. In some cases the
fragment size is doubled in each of the first 5 consecutive al-
locations. This pattern diminishes as even more data is writ-
ten, but the size of the fragments is constantly increasing,
occasionally with a large deviation either up or down. The

8 Martin Karresand et al.

Table 8 The number of fragments per file and their sizes in clusters
for the Windows 7 stream writing experiment using BM 7:1. There is
a weak correlation between the number of fragments, the writing order
and the file size, which is most clearly seen for the largest files. The
result is presented in order of size and time of writing.

No. of frag. File size [cluster]
26 1024
35 1024
40 1024
70 32768
44 32768

1131 131328
468 131328
195 131328
242 131328
339 262144
226 262144

1657 393216
340 393216
328 393216
206 393216

deviations are sometimes as frequent as every second alloca-
tion. In some cases the fragment size is suddenly increased
with one or two orders of magnitude, a few times even more.

3.2.2 Windows 10

As for the Windows 7 case we show the number of frag-
ments per file and their sizes in clusters (see Table 9). Win-
dows 10 does not show any correlation between file size,
writing order and number of fragments.

The stream writing file allocation for Windows 10 is
smoother than for Windows 7, with fewer and lower devi-
ations. The general increase of the fragment’s size seen in
Windows 7, as well as the small fragments at the beginning
of the file operations, are present also in the Windows 10
results. The first few file fragments often reach sizes of ap-
proximately 40 clusters in two or three steps, which is faster
than in Windows 7. The first stream writing file operations
using the BM 10:0 allocation layout ends with one very large
allocation, especially when the files are bigger. In Table 9
this is manifested in the low number of fragments connected
to some of the files containing 131072 and 262144 clusters.

3.2.3 General observations

Both Windows 7 and 10 show a general increase, although
not without deviations, regarding the size of the allocated
fragments. The allocation always starts with a small frag-
ment, the maximum size of the first fragment for both ver-
sions of Windows is 5. The distribution of starting fragment
sizes can be seen in Table 10.

All (100%) of the Windows 7 starting fragments are of
size 1 and for Windows 10 the amount of size 1 starting
fragments is 52%.

Table 9 The number of fragments per file and their sizes in clusters
for the Windows 10 stream writing experiment using BM 10:0. No real
correlation between the number of fragments, the writing order and the
file size can be seen. The result is presented in order of size and time
of writing.

No. of frag. File size [cluster]
7 1024

17 1024
27 1024
13 1024
48 1536
70 12288
18 32768
20 32768

174 49152
21 131072
39 131072
64 131072
43 131072

326 196608
165 196608
417 262144

1024 262144
103 262144

47 262144
23 262144
53 262144
48 262144

152 393216

Table 10 The accumulated amount of first fragment sizes in both Win-
dows 7 and 10 using stream writing. All Windows 7 starting fragments
are single clusters.

Frag. size [cluster] Amount [%]
1 71
2 16
3 8
4 0
5 5

4 Discussion

The main contribution of the experiment on the behavior of
the NTFS allocation algorithm in Windows 7 and 10 is the
result showing a globally decreasing fragment size of block
writing file operations. However there are a few constraints
that first must be fulfilled. First of all the file system must
be fragmented, without any large areas of free, unallocated
clusters and the files to be written have to be larger than
the largest available free area to force the allocation algo-
rithm to fragment them. Consequently there should not be
any deallocations of areas larger than the next file to be writ-
ten. If a new larger free area becomes available the decreas-
ing trend will probably be restarted from there. Apparently
stream writing interleaved with block writing is not affect-
ing the decreasing size allocation pattern, but such files are
not included in the decreasing pattern. Unfragmented files
will also be excluded from the pattern.

Mobile Networks and Applications 9

The decreasing fragment size behavior can for example
be used in digital forensic investigations to get a relative
timestamp or the sequence of writing of a collection of block
written files. By comparing the sizes of the first and second
last allocated fragments of files their timestamps can be ver-
ified, or their internal age relative each other be decided.

It is also possible to separate a block written file from a
stream ditto. If that knowledge is combined with knowledge
on what type of writing strategy different software packages
in a Windows computer use the probable source of a file can
be decided. This is for example useful in triage situations
where it will be enough to scan the NTFS meta data (the
MFT records) to determine the main source of a file.

Also the stream writing behavior of the allocation algo-
rithm can be of use for a digital forensic examiner. Our result
shows that the size of the first fragment of a stream written
file is 1 cluster in 71% of the cases (100% in the 64 GiB vir-
tual hard disk running Windows 7) and none of the stream
written files started with a fragment larger than 5 clusters.
That corresponds to files between 4 and 20 KiB in size. We
have earlier found the average amount of files in a standard
office computer to be approximately 350000 by counting the
files in 25 (office) computers running mostly Windows 7 [5,
11]. If we combine that with the official disk space require-
ment of 20 GiB for a standard Windows 7 to 10 installation
[12–14] we get an average file size of 60 KiB. This is a the-
oretical lower bound, because we did not take the size of the
user files included in the computer average of 350000 files
into account. Hence any allocated area smaller than 60 KiB
belongs to the first part of a stream written file with a high
probability. This knowledge can for example be used in file
carving processes to quickly find the data type of files di-
rectly from the data, without the need to trust the file name,
by searching for small areas with similar data content and
then extracting any magical bytes from them.

Since we have reverse engineered the allocation algo-
rithm without access to any documentation we have no writ-
ten proofs of the reasons behind the behavior we have found.
We therefore can only hypothesize, but a valid reason for
the block writing behavior of creating similarly sized frag-
ments is to create an even distribution of the data over sev-
eral cylinders or flash memory capsules for faster access and
wear levelling.

The reason behind the stream writing behavior of start-
ing small and increasing the fragment sizes might be two-
fold. By starting from very small fragment sizes any free
clusters left over when doing best fit allocation can be taken
care of. The other reason is the fact that without knowledge
on the actual size of the file to be written the algorithm has
to estimate the final size of the file. By increasing the size
of the fragments as more data is written we get a acceptable
compromise between speed (less fragmentation) and a good

utilization factor (small areas are not wasted). Hence the av-
erage fragment size will increase as the file size increases.

The file system allocation algorithm of Windows 7 and 10
when using NTFS should be best fit [1], but our experiment
shows that it is not completely true. The block writing al-
location is deviating from a strict best fit behavior in a few
cases. Possible reasons for any differences in behavior are
typically OS version, partition size, degree of file system uti-
lization, file size and type of file writing behavior.

Regarding the influence of the OS we have not noticed
any differences in allocation behavior. The result might have
been influence by the fact that we only used two versions of
Windows, but by using both the first and the latest versions
of the latest generation of Windows we cover for any differ-
ences introduced in Windows 8 and 8.1.

Any differences in allocation strategy depending on the
partition size is covered by the use of both a 64 GiB and
a 1 TiB virtual hard disk. During the experiments we no-
ticed small differences in behavior between the small and
the large hard disks, especially in the stream writing case
where the deviations from the increasing fragment size were
smaller for the 1 TiB hard disk than for the 64 GiB hard
disk. The most probable reason for this behavior is the larger
amount of varied sizes of free areas to choose from in the
larger disk.

We found that the allocation algorithm does not use a
best fit strategy when allocating block written files in Win-
dows 10 when using the unmodified BM 10:0 allocation lay-
out. Instead it allocates chunks of the large area of free clus-
ters at the end of the file system, which seems reasonable
from a wear levelling point of view. We did not observe the
same behavior in the Windows 7 case, but there we had got-
ten rid of all large unallocated areas before the experiment
started.

The allocation behavior during the 4 MiB file operations
in Windows 10 (using the BM 10:0 layout) where the al-
gorithm allocates parts of one of the large free areas at the
end of the partition cannot be explained by the fact that the
block writing operations and the stream operations where in-
terleaved during the experiment. Nor can it be explained by
any system files being written to the free areas that would
have been appropriate to use. After file operation 5 in Ta-
ble 4 there still are several free areas of a few thousand clus-
ters left that could have been used instead. The same applies
to the file write operation 5 shown in Table 5. This behavior
more resembles a worst fit allocation strategy than a best fit
ditto.

The knowledge on the allocation behavior of Windows
and NTFS gained through the experiments presented in this
paper will benefit our previous work within the file carving
area [4,6–10]. There we experimented with different algo-
rithms to detect the file type of data fragments using only
the information held in the fragments themselves. Using for

10 Martin Karresand et al.

example the fact that the allocation algorithm has different
behavior for block writing and stream writing can help iden-
tify and separate data types that are written in different ways.
Also the fact that the free areas often are not fully utilized
can help improve data type separation in heavily fragmented
cases by explaining very small areas with different prop-
erties intertwined between larger areas of data with equal
properties. Especially since it is well known that many file
types contain areas of different types of data [4,19].

5 Conclusion and future work

By writing files ranging in size between 4 MiB to 1,5 GiB
to a Windows 7 virtual machine having a 64 GiB hard drive,
as well as a Windows 10 virtual machine having a 1 TiB
hard drive, we have found that the Windows NTFS alloca-
tion algorithm is more complex than the best fit strategy de-
scribed in the literature [1]. In most of the file operations
executed during our experiment the algorithm behaved as
a strict best fit type, but when having access to a very large
area of free clusters it started to allocate parts of that area in-
stead of using options corresponding to a best fit allocation
strategy. Looking at data from previous experiments [5,11]
we have found that having a few very large areas of free clus-
ters at the end of a NTFS partition is the standard situation,
thus the allocation strategy used by Windows together with
NTFS is only best fit in special circumstances. Likewise the
allocation strategy is not strictly best fit when dealing with
stream written files, where the allocation algorithm is cre-
ating increasingly larger fragments as more data is written
(the fragment size and the currently written size correlates).
However, the fragments are allocated to the best fitting free
areas, so there is a foundation of best fit behavior in the al-
gorithm.

We have not found any literature empirically studying
the inner workings of the allocation strategy used in Win-
dows 7 and 10 partitions formatted as NTFS. Therefore al-
ready the existence of this work contributes to the digital
forensics field. The result can furthermore be used to ver-
ify timestamps, rebuild files in file carving and determine
the type of file on a high level by looking at how the sizes
of the allocated areas increases or decreases. Block written
files are allocated in decreasing order of fragment size and
stream written files are allocated in increasing order of frag-
ment size. We also found that very small allocated areas (1
to 5 clusters) belong to the start of stream written files with
high probability.

As future work we will expand the experiment to be able
to isolate the different parameters affecting the behavior of
the allocation algorithm. We also need more data to fur-
ther strengthen our results and conclusions. It would also be
of great interest to include other OSs and file systems than
Windows and NTFS in the experiment.

References

1. Carrier, B.: File System Forensic Analysis. Addison-Wesley Pro-
fessional (2005)

2. Carrier, B.: Tsk tool overview (2014). URL http://wiki.

sleuthkit.org/index.php?title=TSK_Tool_Overview

3. Hughes, J.: The four stages of ntfs file growth (2009). URL
https://blogs.technet.microsoft.com/askcore/2009/

10/16/the-four-stages-of-ntfs-file-growth/. Ac-
cessed 24-10-2018

4. Karresand, M.: Completing the picture — fragments and back
again. Licentiate thesis, Linkping Institute of Technology,
Linkping University, Sweden (2008)

5. Karresand, M., Axelsson, S., Dyrkolbotn, G.O.: Using ntfs clus-
ter allocation behavior to find the location of user data. Digital
Investigation (2019). In press

6. Karresand, M., Shahmehri, N.: File type identification of data
fragments by their binary structure. In: Proceedings from the Sev-
enth Annual IEEE Systems, Man and Cybernetics (SMC) Infor-
mation Assurance Workshop, 2006, pp. 140–147. IEEE, Piscat-
away, NJ, USA (2006)

7. Karresand, M., Shahmehri, N.: Oscar – file type and camera iden-
tification using the structure of binary data fragments. In: J. Hag-
gerty, M. Merabti (eds.) Proceedings of the 1st Conference on Ad-
vances in Computer Security and Forensics, ACSF, pp. 11–20. The
School of Computing and Mathematical Sciences, John Moores
University, Liverpool, UK (2006)

8. Karresand, M., Shahmehri, N.: Oscar – file type identification of
binary data in disk clusters and RAM pages. In: Proceedings of
IFIP International Information Security Conference: Security and
Privacy in Dynamic Environments (SEC2006), Lecture Notes in
Computer Science, pp. 413–424 (2006)

9. Karresand, M., Shahmehri, N.: Oscar – using byte pairs to find file
type and camera make of data fragments. In: A. Blyth, I. Suther-
land (eds.) Proceedings of the 2nd European Conference on Com-
puter Network Defence, in conjunction with the First Workshop
on Digital Forensics and Incident Analysis (EC2ND 2006), pp.
85–94. Springer Verlag (2007)

10. Karresand, M., Shahmehri, N.: Reassembly of fragmented jpeg
images containing restart markers. In: Proceedings - 4th Annual
European Conference on Computer Network Defense, EC2ND
2008, pp. 25–32 (2008)

11. Karresand, M., salena Warnqvist, Lindahl, D., Axelsson, S.,
Dyrkolbotn, G.O.: Advances in Digital Forensics XIV, chap. Cre-
ating a map of user data in NTFS to improve file carving, p. to be
decided. Springer International Publishing AG, Cham, Switzer-
land (2019)

12. Microsoft: System requirements (2017). URL https:

//support.microsoft.com/en-gb/help/12660/windows-

8-system-requirements. Accessed 30-04-2018
13. Microsoft: Windows 10 system requirements (2017). URL

https://support.microsoft.com/en-us/help/4028142/

windows-windows-10-system-requirements. Accessed
30-04-2018

14. Microsoft: Windows 7 system requirements (2017). URL
https://support.microsoft.com/en-us/help/10737/

windows-7-system-requirements. Accessed 30-04-2018
15. Microsoft: How ntfs works (2018). URL https:

//technet.microsoft.com/pt-pt/library/cc781134(v=

ws.10).aspx. Accessed 30-09-2018
16. Minnaard, W.: The linux fat32 allocator and file creation order

reconstruction. Digital Investigation 11(3), 224–233 (2014). DOI
10.1016/j.diin.2014.06.008. Special Issue: Embedded Forensics

17. Pal, A., Memon, N.: The evolution of file carving. IEEE Signal
Processing Magazine 26(2), 59–71 (2009). DOI 10.1109/MSP.
2008.931081

Mobile Networks and Applications 11

18. Poisel, R., Tjoa, S.: A comprehensive literature review of file carv-
ing. In: 2013 International Conference on Availability, Reliability
and Security, pp. 475–484 (2013). DOI 10.1109/ARES.2013.62

19. Roussev, V., Garfinkel, S.: File fragment classification-the case for
specialized approaches. In: 2009 Fourth International IEEE Work-
shop on Systematic Approaches to Digital Forensic Engineering,
pp. 3–14 (2009). DOI 10.1109/SADFE.2009.21

20. Silberschatz, A., Galvin, P., Gagne, G.: Operating System Con-
cepts, 9 edn. Wiley (2012)

21. Stallings, W.: Operating Systems – Internals and Design Princi-
ples, 7th edn. Pearson Education Inc., Upper Saddle River, New
Jersey, USA (2012)

22. Superuser: What block allocation algorithm does ntfs use?
(2017). URL https://superuser.com/questions/274855/

what-block-allocation-algorithm-does-ntfs-use. Ac-
cessed 24-01-2019

23. Tanenbaum, A., Bos, H.: Modern Operating Systems, 4th edn.
Pearson Education Inc., Upper Saddle River, New Jersey, USA
(2015)

24. Tse, W.: Forensic analysis using fat32 file cluster allocation pat-
terns. Master’s thesis, University of Hong Kong (2011)

25. Willassen, S.: Finding evidence of antedating in digital investi-
gations. In: 2008 Third International Conference on Availability,
Reliability and Security, pp. 26–32 (2008). DOI 10.1109/ARES.
2008.149

26. Willassen, S.: Methods for enhancement of timestamp evidence in
digital investigations. Ph.D. thesis, Norwegian University of Sci-
ence and Technology, Faculty of Information Technology, Math-
ematics and Electrical Engineering, Department of Telematics
(2008)

